Законодательство РФ

"Правила устройства электроустановок (ПУЭ). Шестое издание" (утв. Главтехуправлением, Госэнергонадзором Минэнерго СССР 05.10.1979) (ред. от 20.06.2003)


ПРАВИЛА

УСТРОЙСТВА ЭЛЕКТРОУСТАНОВОК

Шестое издание "Правила устройства электроустановок" (ПУЭ) выходило отдельными тиражами в 1985 - 1987 гг. с учетом дополнений и уточнений, принятых решениями Минэнерго СССР по 31 августа 1985 года.

В настоящий дополнительный тираж "Правила устройства электроустановок" шестого издания включены все изменения, оформленные в период с 31 августа 1985 года по 30 декабря 1997 года и согласованные в необходимой части с Госстроем России и Госгортехнадзором России.

Требования Правил являются обязательными для всех ведомств, организаций и предприятий, независимо от форм собственности, занимающихся проектированием и монтажом электроустановок.


Раздел 1. ОБЩИЕ ПРАВИЛА


Утверждена

Главтехуправлением

и Госэнергонадзором

Минэнерго СССР

5 октября 1979 года

Согласована

с Госстроем СССР

13 января 1977 года

Глава 1.1. ОБЩАЯ ЧАСТЬ

Утратила силу с 1 января 2003 года. - Правила, утв. Приказом Минэнерго РФ от 08.07.2002 N 204.


Утверждена

Главтехуправлением

и Госэнергонадзором

Минэнерго СССР

5 июля 1977 года

Согласована

с Госстроем СССР

3 августа 1976 года

Глава 1.2. ЭЛЕКТРОСНАБЖЕНИЕ И ЭЛЕКТРИЧЕСКИЕ СЕТИ

Утратила силу с 1 января 2003 года. - Правила, утв. Приказом Минэнерго РФ от 08.07.2002 N 204.


Утверждена

Главтехуправлением

и Госэнергонадзором

Минэнерго СССР

10 декабря 1979 года

Глава 1.3. ВЫБОР ПРОВОДНИКОВ ПО НАГРЕВУ,

ЭКОНОМИЧЕСКОЙ ПЛОТНОСТИ ТОКА И ПО УСЛОВИЯМ КОРОНЫ


ОБЛАСТЬ ПРИМЕНЕНИЯ

1.3.1. Настоящая глава Правил распространяется на выбор сечений электрических проводников (неизолированные и изолированные провода, кабели и шины) по нагреву, экономической плотности тока и по условиям короны. Если сечение проводника, определенное по этим условиям, получается меньше сечения, требуемого по другим условиям (термическая и электродинамическая стойкость при токах КЗ, потери и отклонения напряжения, механическая прочность, защита от перегрузки), то должно приниматься наибольшее сечение, требуемое этими условиями.


ВЫБОР СЕЧЕНИЙ ПРОВОДНИКОВ ПО НАГРЕВУ

1.3.2. Проводники любого назначения должны удовлетворять требованиям в отношении предельно допустимого нагрева с учетом не только нормальных, но и послеаварийных режимов, а также режимов в период ремонта и возможных неравномерностей распределения токов между линиями, секциями шин и т.п. При проверке на нагрев принимается получасовой максимум тока, наибольший из средних получасовых токов данного элемента сети.

1.3.3. При повторно-кратковременном и кратковременном режимах работы электроприемников (с общей длительностью цикла до 10 мин. и длительностью рабочего периода не более 4 мин.) в качестве расчетного тока для проверки сечения проводников по нагреву следует принимать ток, приведенный к длительному режиму. При этом:

1) для медных проводников сечением до 6 кв. мм, а для алюминиевых проводников до 10 кв. мм ток принимается, как для установок с длительным режимом работы;

    2) для медных проводников сечением  более  6  кв.  мм,  а  для
алюминиевых   проводников   более   10  кв.  мм  ток  определяется
умножением   допустимого    длительного   тока    на   коэффициент
          ----
0,875 / \/T   ,  где T    - выраженная  в  относительных  единицах
           п.в        п.в
длительность  рабочего  периода  (продолжительность  включения  по
отношению к продолжительности цикла).

1.3.4. Для кратковременного режима работы с длительностью включения не более 4 мин. и перерывами между включениями, достаточными для охлаждения проводников до температуры окружающей среды, наибольшие допустимые токи следует определять по нормам повторно-кратковременного режима (см. 1.3.3). При длительности включения более 4 мин., а также при перерывах недостаточной длительности между включениями наибольшие допустимые токи следует определять, как для установок с длительным режимом работы.

1.3.5. Для кабелей напряжением до 10 кВ с бумажной пропитанной изоляцией, несущих нагрузки меньше номинальных, может допускаться кратковременная перегрузка, указанная в табл. 1.3.1.


Таблица 1.3.1

ДОПУСТИМАЯ КРАТКОВРЕМЕННАЯ ПЕРЕГРУЗКА ДЛЯ КАБЕЛЕЙ

НАПРЯЖЕНИЕМ ДО 10 КВ С БУМАЖНОЙ ПРОПИТАННОЙ ИЗОЛЯЦИЕЙ

Коэффициент предварительной нагрузки

Вид прокладки

Допустимая перегрузка по отношению к номинальной в течение, ч

0,5

1,0

3,0

0,6

В земле

1,35

1,30

1,15

В воздухе

1,25

1,15

1,10

В трубах (в земле)

1,20

1,0

1,0

0,8

В земле

1,20

1,15

1,10

В воздухе

1,15

1,10

1,05

В трубах (в земле)

1,10

1,05

1,00

1.3.6. На период ликвидации послеаварийного режима для кабелей с полиэтиленовой изоляцией допускается перегрузка до 10%, а для кабелей с поливинилхлоридной изоляцией до 15% номинальной на время максимумов нагрузки продолжительностью не более 6 ч в сутки в течение 5 сут., если нагрузка в остальные периоды времени этих суток не превышает номинальной.

На период ликвидации послеаварийного режима для кабелей напряжением до 10 кВ с бумажной изоляцией допускаются перегрузки в течение 5 сут. в пределах, указанных в табл. 1.3.2.


Таблица 1.3.2

ДОПУСТИМАЯ НА ПЕРИОД ЛИКВИДАЦИИ ПОСЛЕАВАРИЙНОГО

РЕЖИМА ПЕРЕГРУЗКА ДЛЯ КАБЕЛЕЙ НАПРЯЖЕНИЕМ ДО 10 КВ

С БУМАЖНОЙ ИЗОЛЯЦИЕЙ

Коэффициент предварительной нагрузки

Вид прокладки

Допустимая перегрузка по отношению к номинальной при длительности максимума, ч

1

3

6

0,6

В земле

1,5

1,35

1,25

В воздухе

1,35

1,25

1,25

В трубах (в земле)

1,30

1,20

1,15

0,8

В земле

1,35

1,25

1,20

В воздухе

1,30

1,25

1,25

В трубах (в земле)

1,20

1,15

1,10

Для кабельных линий, находящихся в эксплуатации более 15 лет, перегрузки должны быть понижены на 10%.

Перегрузка кабельных линий напряжением 20 - 35 кВ не допускается.

1.3.7. Требования к нормальным нагрузкам и послеаварийным перегрузкам относятся к кабелям и установленным на них соединительным и концевым муфтам и концевым заделкам.

1.3.8. Нулевые рабочие проводники в четырехпроводной системе трехфазного тока должны иметь проводимость не менее 50% проводимости фазных проводников; в необходимых случаях она должна быть увеличена до 100% проводимости фазных проводников.

1.3.9. При определении допустимых длительных токов для кабелей, неизолированных и изолированных проводов и шин, а также для жестких и гибких токопроводов, проложенных в среде, температура которой существенно отличается от приведенной в 1.3.12 - 1.3.15 и 1.3.22, следует применять коэффициенты, приведенные в табл. 1.3.3.


Таблица 1.3.3

ПОПРАВОЧНЫЕ КОЭФФИЦИЕНТЫ НА ТОКИ ДЛЯ КАБЕЛЕЙ,

НЕИЗОЛИРОВАННЫХ И ИЗОЛИРОВАННЫХ ПРОВОДОВ И ШИН

В ЗАВИСИМОСТИ ОТ ТЕМПЕРАТУРЫ ЗЕМЛИ И ВОЗДУХА

Условная температура среды, град. C

Нормированная температура жил, град. C

Поправочные коэффициенты на токи при расчетной температуре среды, град. C

-5 и ниже

0

+5

+10

+15

+20

+25

+30

+35

+40

+45

+50

15

80

1,14

1,11

1,08

1,04

1,00

0,96

0,92

0,88

0,83

0,78

0,73

0,68

25

80

1,24

1,20

1,17

1,13

1,09

1,04

1,00

0,95

0,90

0,85

0,80

0,74

25

70

1,29

1,24

1,20

1,15

1,11

1,05

1,00

0,94

0,88

0,81

0,74

0,67

15

65

1,18

1,14

1,10

1,05

1,00

0,95

0,89

0,84

0,77

0,71

0,63

0,55

25

65

1,32

1,27

1,22

1,17

1,12

1,06

1,00

0,94

0,87

0,79

0,71

0,61

15

60

1,20

1,15

1,12

1,06

1,00

0,94

0,88

0,82

0,75

0,67

0,57

0,47

25

60

1,36

1,31

1,25

1,20

1,13

1,07

1,00

0,93

0,85

0,76

0,66

0,54

15

55

1,22

1,17

1,12

1,07

1,00

0,93

0,86

0,79

0,71

0,61

0,50

0,36

25

55

1,41

1,35

1,29

1,23

1,15

1,08

1,00

0,91

0,82

0,71

0,58

0,41

15

50

1,25

1,20

1,14

1,07

1,00

0,93

0,84

0,76

0,66

0,54

0,37

-

25

50

1,48

1,41

1,34

1,26

1,18

1,09

1,00

0,89

0,78

0,63

0,45

-


ДОПУСТИМЫЕ ДЛИТЕЛЬНЫЕ ТОКИ ДЛЯ ПРОВОДОВ, ШНУРОВ И КАБЕЛЕЙ

С РЕЗИНОВОЙ ИЛИ ПЛАСТМАССОВОЙ ИЗОЛЯЦИЕЙ

1.3.10. Допустимые длительные токи для проводов с резиновой или поливинилхлоридной изоляцией, шнуров с резиновой изоляцией и кабелей с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках приведены в табл. 1.3.4 - 1.3.11. Они приняты для температур: жил +65, окружающего воздуха +25 и земли +15 град. C.

При определении количества проводов, прокладываемых в одной трубе (или жил многожильного проводника), нулевой рабочий проводник четырехпроводной системы трехфазного тока, а также заземляющие и нулевые защитные проводники в расчет не принимаются.

Данные, содержащиеся в табл. 1.3.4 и 1.3.5, следует применять независимо от количества труб и места их прокладки (в воздухе, перекрытиях, фундаментах).

Допустимые длительные токи для проводов и кабелей, проложенных в коробах, а также в лотках пучками, должны приниматься: для проводов - по табл. 1.3.4 и 1.3.5, как для проводов, проложенных в трубах, для кабелей - по табл. 1.3.6 - 1.3.8, как для кабелей, проложенных в воздухе. При количестве одновременно нагруженных проводов более четырех, проложенных в трубах, коробах, а также в лотках пучками, токи для проводов должны приниматься по табл. 1.3.4 и 1.3.5, как для проводов, проложенных открыто (в воздухе), с введением снижающих коэффициентов 0,68 для 5 и 6; 0,63 для 7 - 9 и 0,6 для 10 - 12 проводников.

Для проводов вторичных цепей снижающие коэффициенты не вводятся.


Таблица 1.3.4

ДОПУСТИМЫЙ ДЛИТЕЛЬНЫЙ ТОК ДЛЯ ПРОВОДОВ

И ШНУРОВ С РЕЗИНОВОЙ И ПОЛИВИНИЛХЛОРИДНОЙ ИЗОЛЯЦИЕЙ

С МЕДНЫМИ ЖИЛАМИ

Сечение токопроводящей жилы, кв. мм

Ток, А, для проводов, проложенных

открыто

в одной трубе

двух одножильных

трех одножильных

четырех одножильных

одного двухжильного

одного трехжильного

0,5

11

-

-

-

-

-

0,75

15

-

-

-

-

1

17

16

15

14

15

14

1,2

20

18

16

15

16

14,5

1,5

23

19

17

16

18

15

2

26

24

22

20

23

19

2,5

30

27

25

25

25

21

3

34

32

28

26

28

24

4

41

38

35

30

32

27

5

46

42

39

34

37

31

6

50

46

42

40

40

34

8

62

54

51

46

48

43

10

80

70

60

50

55

50

16

100

85

80

75

80

70

25

140

115

100

90

100

85

35

170

135

125

115

125

100

50

215

185

170

150

160

135

70

270

225

210

185

195

175

95

330

275

255

225

245

215

120

385

315

290

260

295

250

150

440

360

330

-

-

-

185

510

-

-

-

-

-

240

605

-

-

-

-

-

300

695

-

-

-

-

-

400

830

-

-

-

-

-


Таблица 1.3.5

ДОПУСТИМЫЙ ДЛИТЕЛЬНЫЙ ТОК ДЛЯ ПРОВОДОВ С РЕЗИНОВОЙ

И ПОЛИВИНИЛХЛОРИДНОЙ ИЗОЛЯЦИЕЙ С АЛЮМИНИЕВЫМИ ЖИЛАМИ

Сечение токопроводящей жилы, кв. мм

Ток, А, для проводов, проложенных

открыто

в одной трубе

двух одножильных

трех одножильных

четырех одножильных

одного двухжильного

одного трехжильного

2

21

19

18

15

17

14

2,5

24

20

19

19

19

16

3

27

24

22

21

22

18

4

32

28

28

23

25

21

5

36

32

30

27

28

24

6

39

36

32

30

31

26

8

46

43

40

37

38

32

10

60

50

47

39

42

38

16

75

60

60

55

60

55

25

105

85

80

70

75

65

35

130

100

95

85

95

75

50

165

140

130

120

125

105

70

210

175

165

140

150

135

95

255

215

200

175

190

165

120

295

245

220

200

230

190

150

340

275

255

-

-

-

185

390

-

-

-

-

-

240

465

-

-

-

-

-

300

535

-

-

-

-

-

400

645

-

-

-

-

-


Таблица 1.3.6

ДОПУСТИМЫЙ ДЛИТЕЛЬНЫЙ ТОК

ДЛЯ ПРОВОДОВ С МЕДНЫМИ ЖИЛАМИ С РЕЗИНОВОЙ

ИЗОЛЯЦИЕЙ В МЕТАЛЛИЧЕСКИХ ЗАЩИТНЫХ ОБОЛОЧКАХ И КАБЕЛЕЙ

С МЕДНЫМИ ЖИЛАМИ С РЕЗИНОВОЙ ИЗОЛЯЦИЕЙ В СВИНЦОВОЙ,

ПОЛИВИНИЛХЛОРИДНОЙ, НАЙРИТОВОЙ ИЛИ РЕЗИНОВОЙ

ОБОЛОЧКЕ, БРОНИРОВАННЫХ И НЕБРОНИРОВАННЫХ

Сечение токопроводящей жилы, кв. мм

Ток <*>, А, для проводов и кабелей

одножильных

двухжильных

трехжильных

при прокладке

в воздухе

в воздухе

в земле

в воздухе

в земле

1,5

23

19

33

19

27

2,5

30

27

44

25

38

4

41

38

55

35

49

6

50

50

70

42

60

10

80

70

105

55

90

16

100

90

135

75

115

25

140

115

175

95

150

35

170

140

210

120

180

50

215

175

265

145

225

70

270

215

320

180

275

95

325

260

385

220

330

120

385

300

445

260

385

150

440

350

505

305

435

185

510

405

570

350

500

240

605

-

-

-

-

--------------------------------

<*> Токи относятся к проводам и кабелям как с нулевой жилой, так и без нее.


Таблица 1.3.7

ДОПУСТИМЫЙ ДЛИТЕЛЬНЫЙ ТОК ДЛЯ КАБЕЛЕЙ

С АЛЮМИНИЕВЫМИ ЖИЛАМИ С РЕЗИНОВОЙ ИЛИ ПЛАСТМАССОВОЙ

ИЗОЛЯЦИЕЙ В СВИНЦОВОЙ, ПОЛИВИНИЛХЛОРИДНОЙ И РЕЗИНОВОЙ

ОБОЛОЧКАХ, БРОНИРОВАННЫХ И НЕБРОНИРОВАННЫХ

Сечение токопроводящей жилы, кв. мм

Ток, А, для кабелей

одножильных

двухжильных

трехжильных

при прокладке

в воздухе

в воздухе

в земле

в воздухе

в земле

2,5

23

21

34

19

29

4

31

29

42

27

38

6

38

38

55

32

46

10

60

55

80

42

70

16

75

70

105

60

90

25

105

90

135

75

115

35

130

105

160

90

140

50

165

135

205

110

175

70

210

165

245

140

210

95

250

200

295

170

255

120

295

230

340

200

295

150

340

270

390

235

335

185

390

310

440

270

385

240

465

-

-

-

-

Примечание. Допустимые длительные токи для четырехжильных кабелей с пластмассовой изоляцией на напряжение до 1 кВ могут выбираться по табл. 1.3.7, как для трехжильных кабелей, но с коэффициентом 0,92.


Таблица 1.3.8

ДОПУСТИМЫЙ ДЛИТЕЛЬНЫЙ ТОК ДЛЯ ПЕРЕНОСНЫХ

ШЛАНГОВЫХ ЛЕГКИХ И СРЕДНИХ ШНУРОВ, ПЕРЕНОСНЫХ ШЛАНГОВЫХ

ТЯЖЕЛЫХ КАБЕЛЕЙ, ШАХТНЫХ ГИБКИХ ШЛАНГОВЫХ, ПРОЖЕКТОРНЫХ

КАБЕЛЕЙ И ПЕРЕНОСНЫХ ПРОВОДОВ С МЕДНЫМИ ЖИЛАМИ

Сечение токопроводящей жилы, кв. мм

Ток <*>, А, для шнуров, проводов и кабелей

одножильных

двухжильных

трехжильных

0,5

-

12

-

0,75

-

16

14

1,0

-

18

16

1,5

-

23

20

2,5

40

33

28

4

50

43

36

6

65

55

45

10

90

75

60

16

120

95

80

25

160

125

105

35

190

150

130

50

235

185

160

70

290

235

200

--------------------------------

<*> Токи относятся к шнурам, проводам и кабелям с нулевой жилой и без нее.


Таблица 1.3.9

ДОПУСТИМЫЙ ДЛИТЕЛЬНЫЙ ТОК ДЛЯ ПЕРЕНОСНЫХ ШЛАНГОВЫХ

С МЕДНЫМИ ЖИЛАМИ С РЕЗИНОВОЙ ИЗОЛЯЦИЕЙ КАБЕЛЕЙ

ДЛЯ ТОРФОПРЕДПРИЯТИЙ

Сечение токопроводящей жилы, кв. мм

Ток <*>, А, для кабелей напряжением, кВ

0,5

3

6

6

44

45

47

10

60

60

65

16

80

80

85

25

100

105

105

35

125

125

130

50

155

155

160

70

190

195

-

--------------------------------

<*> Токи относятся к кабелям с нулевой жилой и без нее.


Таблица 1.3.10

ДОПУСТИМЫЙ ДЛИТЕЛЬНЫЙ ТОК ДЛЯ ШЛАНГОВЫХ

С МЕДНЫМИ ЖИЛАМИ С РЕЗИНОВОЙ ИЗОЛЯЦИЕЙ КАБЕЛЕЙ

ДЛЯ ПЕРЕДВИЖНЫХ ЭЛЕКТРОПРИЕМНИКОВ

Сечение токопроводящей жилы, кв. мм

Ток <*>, А, для кабелей напряжением, кВ

Сечение токопроводящей жилы, кв. мм

Ток <*>, А, для кабелей напряжением, кВ

3

6

3

6

16

85

90

70

215

220

25

115

120

95

260

265

35

140

145

120

305

310

50

175

180

150

345

350

--------------------------------

<*> Токи относятся к кабелям с нулевой жилой и без нее.


Таблица 1.3.11

ДОПУСТИМЫЙ ДЛИТЕЛЬНЫЙ ТОК ДЛЯ ПРОВОДОВ С МЕДНЫМИ

ЖИЛАМИ С РЕЗИНОВОЙ ИЗОЛЯЦИЕЙ ДЛЯ ЭЛЕКТРИФИЦИРОВАННОГО

ТРАНСПОРТА 1,3 И 4 КВ

Сечение токопроводящей жилы, кв. мм

Ток, А

Сечение токопроводящей жилы, кв. мм

Ток, А

Сечение токопроводящей жилы, кв. мм

Ток, А

1

20

16

115

120

390

1,5

25

25

150

150

445

2,5

40

35

185

185

505

4

50

50

230

240

590

6

65

70

285

300

670

10

90

95

340

350

745

1.3.11. Допустимые длительные токи для проводов, проложенных в лотках, при однорядной прокладке (не в пучках) следует принимать, как для проводов, проложенных в воздухе.

Допустимые длительные токи для проводов и кабелей, прокладываемых в коробах, следует принимать по табл. 1.3.4 - 1.3.7, как для одиночных проводов и кабелей, проложенных открыто (в воздухе), с применением снижающих коэффициентов, указанных в табл. 1.3.12.


Таблица 1.3.12

СНИЖАЮЩИЙ КОЭФФИЦИЕНТ ДЛЯ ПРОВОДОВ И КАБЕЛЕЙ,

ПРОКЛАДЫВАЕМЫХ В КОРОБАХ

Способ прокладки

Количество проложенных проводов и кабелей

Снижающий коэффициент для проводов и кабелей, питающих

одножильных

многожильных

отдельные электроприемники с коэффициентом использования до 0,7

группы электроприемников и отдельные приемники с коэффициентом использования более 0,7

Многослойно и пучками

-

До 4

1,0

-

2

5 - 6

0,85

-

3 - 9

7 - 9

0,75

-

10 - 11

10 - 11

0,7

-

12 - 14

12 - 14

0,65

-

15 - 18

15 - 18

0,6

-

Однослойно

2 - 4

2 - 4

-

0,67

5

5

-

0,6

При выборе снижающих коэффициентов контрольные и резервные провода и кабели не учитываются.


ДОПУСТИМЫЕ ДЛИТЕЛЬНЫЕ ТОКИ ДЛЯ КАБЕЛЕЙ С БУМАЖНОЙ

ПРОПИТАННОЙ ИЗОЛЯЦИЕЙ

1.3.12. Допустимые длительные токи для кабелей напряжением до 35 кВ с изоляцией из пропитанной кабельной бумаги в свинцовой, алюминиевой или поливинилхлоридной оболочке приняты в соответствии с допустимыми температурами жил кабелей:

Номинальное напряжение, кВ ....... До 3      6      10     20 и 35

Допустимая температура жилы
кабеля, град. C .................. +80     +65     +60       +50

1.3.13. Для кабелей, проложенных в земле, допустимые длительные токи приведены в табл. 1.3.13, 1.3.16, 1.3.19 - 1.3.22. Они приняты из расчета прокладки в траншее на глубине 0,7 - 1,0 м не более одного кабеля при температуре земли +15 град. C и удельном сопротивлении земли 120 см x К/Вт.


Таблица 1.3.13

ДОПУСТИМЫЙ ДЛИТЕЛЬНЫЙ ТОК ДЛЯ КАБЕЛЕЙ С МЕДНЫМИ ЖИЛАМИ

С БУМАЖНОЙ ПРОПИТАННОЙ МАСЛОКАНИФОЛЬНОЙ И НЕСТЕКАЮЩЕЙ

МАССАМИ ИЗОЛЯЦИЕЙ В СВИНЦОВОЙ ОБОЛОЧКЕ,

ПРОКЛАДЫВАЕМЫХ В ЗЕМЛЕ

Сечение токопроводящей жилы, кв. мм

Ток, А, для кабелей

одножильных до 1 кВ

двухжильных до 1 кВ

трехжильных напряжением, кВ

четырехжильных до 1 кВ

до 3

6

10

6

-

80

70

-

-

-

10

140

105

95

80

-

85

16

175

140

120

105

95

115

25

235

185

160

135

120

150

35

285

225

190

160

150

175

50

360

270

235

200

180

215

70

440

325

285

245

215

265

95

520

380

340

295

265

310

120

595

435

390

340

310

350

150

675

500

435

390

355

395

185

755

-

490

440

400

450

240

880

-

570

510

460

-

300

1000

-

-

-

-

-

400

1220

-

-

-

-

-

500

1400

-

-

-

-

-

625

1520

-

-

-

-

800

1700

-

-

-

-

-


Таблица 1.3.14

ДОПУСТИМЫЙ ДЛИТЕЛЬНЫЙ ТОК ДЛЯ КАБЕЛЕЙ С МЕДНЫМИ ЖИЛАМИ

С БУМАЖНОЙ ПРОПИТАННОЙ МАСЛОКАНИФОЛЬНОЙ И НЕСТЕКАЮЩЕЙ

МАССАМИ ИЗОЛЯЦИЕЙ В СВИНЦОВОЙ ОБОЛОЧКЕ,

ПРОКЛАДЫВАЕМЫХ В ВОДЕ

Сечение токопроводящей жилы, кв. мм

Ток, А, для кабелей

трехжильных напряжением, кВ

четырехжильных до 1 кВ

до 3

6

10

16

-

135

120

-

25

210

170

150

195

35

250

205

180

230

50

305

255

220

285

70

375

310

275

350

95

440

375

340

410

120

505

430

395

470

150

565

500

450

-

185

615

545

510

-

240

715

625

585

-


Таблица 1.3.15

ДОПУСТИМЫЙ ДЛИТЕЛЬНЫЙ ТОК ДЛЯ КАБЕЛЕЙ С МЕДНЫМИ

ЖИЛАМИ С БУМАЖНОЙ ПРОПИТАННОЙ МАСЛОКАНИФОЛЬНОЙ

И НЕСТЕКАЮЩЕЙ МАССАМИ ИЗОЛЯЦИЕЙ В СВИНЦОВОЙ

ОБОЛОЧКЕ, ПРОКЛАДЫВАЕМЫХ В ВОЗДУХЕ

Сечение токопроводящей жилы, кв. мм

Ток, А, для кабелей

одножильных до 1 кВ

двухжильных до 1 кВ

трехжильных напряжением, кВ

четырехжильных до 1 кВ

до 3

6

10

6

-

55

45

-

-

-

10

95

75

60

55

-

60

16

120

95

80

65

60

80

25

160

130

105

90

85

100

35

200

150

125

110

105

120

50

245

185

155

145

135

145

70

305

225

200

175

165

185

95

360

275

245

215

200

215

120

415

320

285

250

240

260

150

470

375

330

290

270

300

185

525

-

375

325

305

340

240

610

-

430

375

350

-

300

720

-

-

-

-

-

400

880

-

-

-

-

-

500

1020

-

-

-

-

-

625

1180

-

-

-

-

-

800

1400

-

-

-

-

-


Таблица 1.3.16

ДОПУСТИМЫЙ ДЛИТЕЛЬНЫЙ ТОК ДЛЯ КАБЕЛЕЙ

С АЛЮМИНИЕВЫМИ ЖИЛАМИ С БУМАЖНОЙ ПРОПИТАННОЙ

МАСЛОКАНИФОЛЬНОЙ И НЕСТЕКАЮЩЕЙ МАССАМИ ИЗОЛЯЦИЕЙ

В СВИНЦОВОЙ ИЛИ АЛЮМИНИЕВОЙ ОБОЛОЧКЕ,

ПРОКЛАДЫВАЕМЫХ В ЗЕМЛЕ

Сечение токопроводящей жилы, кв. мм

Ток, А, для кабелей

одножильных до 1 кВ

двухжильных до 1 кВ

трехжильных напряжением, кВ

четырехжильных до 1 кВ

до 3

6

10

6

-

60

55

-

-

-

10

110

80

75

60

-

65

16

135

110

90

80

75

90

25

180

140

125

105

90

115

35

220

175

145

125

115

135

50

275

210

180

155

140

165

70

340

250

220

190

165

200

95

400

290

260

225

205

240

120

460

335

300

260

240

270

150

520

385

335

300

275

305

185

580

-

380

340

310

345

240

675

-

440

390

355

-

300

770

-

-

-

-

-

400

940

-

-

-

-

-

500

1080

-

-

-

-

-

625

1170

-

-

-

-

-

800

1310

-

-

-

-

-


Таблица 1.3.17

ДОПУСТИМЫЙ ДЛИТЕЛЬНЫЙ ТОК ДЛЯ КАБЕЛЕЙ С АЛЮМИНИЕВЫМИ

ЖИЛАМИ С БУМАЖНОЙ ПРОПИТАННОЙ МАСЛОКАНИФОЛЬНОЙ

И НЕСТЕКАЮЩЕЙ МАССАМИ ИЗОЛЯЦИЕЙ В СВИНЦОВОЙ

ОБОЛОЧКЕ, ПРОКЛАДЫВАЕМЫХ В ВОДЕ

Сечение токопроводящей жилы, кв. мм

Ток, А, для кабелей

трехжильных напряжением, кВ

четырехжильных до 1 кВ

до 3

6

10

16

-

105

90

-

25

160

130

115

150

35

190

160

140

175

50

235

195

170

220

70

290

240

210

270

95

340

290

260

315

120

390

330

305

360

150

435

385

345

-

185

475

420

390

-

240

550

480

450

-


Таблица 1.3.18

ДОПУСТИМЫЙ ДЛИТЕЛЬНЫЙ ТОК ДЛЯ КАБЕЛЕЙ

С АЛЮМИНИЕВЫМИ ЖИЛАМИ С БУМАЖНОЙ ПРОПИТАННОЙ

МАСЛОКАНИФОЛЬНОЙ И НЕСТЕКАЮЩЕЙ МАССАМИ ИЗОЛЯЦИЕЙ

В СВИНЦОВОЙ ИЛИ АЛЮМИНИЕВОЙ ОБОЛОЧКЕ,

ПРОКЛАДЫВАЕМЫХ В ВОЗДУХЕ

Сечение токопроводящей жилы, кв. мм

Ток, А, для кабелей

одножильных до 1 кВ

двухжильных до 1 кВ

трехжильных напряжением, кВ

четырехжильных до 1 кВ

до 3

6

10

6

-

42

35

-

-

-

10

75

55

46

42

-

45

16

90

75

60

50

46

60

25

125

100

80

70

65

75

35

155

115

95

85

80

95

50

190

140

120

110

105

110

70

235

175

155

135

130

140

95

275

210

190

165

155

165

120

320

245

220

190

185

200

150

360

290

255

225

210

230

185

405

-

290

250

235

260

240

470

-

330

290

270

-

300

555

-

-

-

-

-

400

675

-

-

-

-

-

500

785

-

-

-

-

-

625

910

-

-

-

-

-

800

1080

-

-

-

-

-


Таблица 1.3.19

ДОПУСТИМЫЙ ДЛИТЕЛЬНЫЙ ТОК ДЛЯ ТРЕХЖИЛЬНЫХ КАБЕЛЕЙ

НАПРЯЖЕНИЕМ 6 КВ С МЕДНЫМИ ЖИЛАМИ С ОБЕДНЕННОПРОПИТАННОЙ

ИЗОЛЯЦИЕЙ В ОБЩЕЙ СВИНЦОВОЙ ОБОЛОЧКЕ, ПРОКЛАДЫВАЕМЫХ

В ЗЕМЛЕ И ВОЗДУХЕ

Сечение токопроводящей жилы, кв. мм

Ток, А, для кабелей проложенных

Сечение токопроводящей жилы, кв. мм

Ток, А, для кабелей проложенных

в земле

в воздухе

в земле

в воздухе

16

90

65

70

220

170

25

120

90

95

265

210

35

145

110

120

310

245

50

180

140

150

355

290


Таблица 1.3.20

ДОПУСТИМЫЙ ДЛИТЕЛЬНЫЙ ТОК ДЛЯ ТРЕХЖИЛЬНЫХ

КАБЕЛЕЙ НАПРЯЖЕНИЕМ 6 КВ С АЛЮМИНИЕВЫМИ ЖИЛАМИ

С ОБЕДНЕННОПРОПИТАННОЙ ИЗОЛЯЦИЕЙ В ОБЩЕЙ СВИНЦОВОЙ

ОБОЛОЧКЕ, ПРОКЛАДЫВАЕМЫХ В ЗЕМЛЕ И ВОЗДУХЕ

Сечение токопроводящей жилы, кв. мм

Ток, А, для кабелей проложенных

Сечение токопроводящей жилы, кв. мм

Ток, А, для кабелей проложенных

в земле

в воздухе

в земле

в воздухе

16

70

50

70

170

130

25

90

70

95

205

160

35

110

85

120

240

190

50

140

110

150

275

225


Таблица 1.3.21

ДОПУСТИМЫЙ ДЛИТЕЛЬНЫЙ ТОК ДЛЯ КАБЕЛЕЙ С ОТДЕЛЬНО

ОСВИНЦОВАННЫМИ МЕДНЫМИ ЖИЛАМИ С БУМАЖНОЙ ПРОПИТАННОЙ

МАСЛОКАНИФОЛЬНОЙ И НЕСТЕКАЮЩЕЙ МАССАМИ ИЗОЛЯЦИЕЙ,

ПРОКЛАДЫВАЕМЫХ В ЗЕМЛЕ, ВОДЕ, ВОЗДУХЕ

Сечение токопроводящей жилы, кв. мм

Ток, А, для трехжильных кабелей напряжением, кВ

20

35

при прокладке

в земле

в воде

в воздухе

в земле

в воде

в воздухе

25

110

120

85

-

-

-

35

135

145

100

-

-

-

50

165

180

120

-

-

-

70

200

225

150

-

-

-

95

240

275

180

-

-

-

120

275

315

205

270

290

205

150

315

350

230

310

-

230

185

355

390

265

-

-

-


Таблица 1.3.22

ДОПУСТИМЫЙ ДЛИТЕЛЬНЫЙ ТОК ДЛЯ КАБЕЛЕЙ

С ОТДЕЛЬНО ОСВИНЦОВАННЫМИ АЛЮМИНИЕВЫМИ ЖИЛАМИ С БУМАЖНОЙ

ПРОПИТАННОЙ МАСЛОКАНИФОЛЬНОЙ И НЕСТЕКАЮЩЕЙ МАССАМИ

ИЗОЛЯЦИЕЙ, ПРОКЛАДЫВАЕМЫХ В ЗЕМЛЕ, ВОДЕ, ВОЗДУХЕ

Сечение токопроводящей жилы, кв. мм

Ток, А, для трехжильных кабелей напряжением, кВ

20

35

при прокладке

в земле

в воде

в воздухе

в земле

в воде

в воздухе

25

85

90

65

-

-

-

35

105

110

75

-

-

-

50

125

140

90

-

-

-

70

155

175

115

-

-

-

95

185

210

140

-

-

-

120

210

245

160

210

225

160

150

240

270

175

240

-

175

185

275

300

205

-

-

-


Таблица 1.3.23

ПОПРАВОЧНЫЙ КОЭФФИЦИЕНТ НА ДОПУСТИМЫЙ ДЛИТЕЛЬНЫЙ ТОК

ДЛЯ КАБЕЛЕЙ, ПРОЛОЖЕННЫХ В ЗЕМЛЕ, В ЗАВИСИМОСТИ

ОТ УДЕЛЬНОГО СОПРОТИВЛЕНИЯ ЗЕМЛИ

Характеристика земли

Удельное сопротивление, см x К/Вт

Поправочный коэффициент

Песок влажностью более 9% песчано-глинистая почва влажностью более 1%

80

1,05

Нормальные почва и песок влажностью 7 - 9%, песчано-глинистая почва влажностью 12 - 14%

120

1,00

Песок влажностью более 4 и менее 7%, песчано-глинистая почва влажностью 8 - 12%

200

0,87

Песок влажностью до 4%, каменистая почва

300

0,75

При удельном сопротивлении земли, отличающемся от 120 см x К/Вт, необходимо к токовым нагрузкам, указанным в упомянутых ранее таблицах, применять поправочные коэффициенты, указанные в табл. 1.3.23.

1.3.14. Для кабелей, проложенных в воде, допустимые длительные токи приведены в табл. 1.3.14, 1.3.17, 1.3.21, 1.3.22. Они приняты из расчета температуры воды +15 град. C.

1.3.15. Для кабелей, проложенных в воздухе, внутри и вне зданий, при любом количестве кабелей и температуре воздуха +25 град. C допустимые длительные токи приведены в табл. 1.3.15, 1.3.18 - 1.3.22, 1.3.24, 1.3.25.

1.3.16. Допустимые длительные токи для одиночных кабелей, прокладываемых в трубах в земле, должны приниматься, как для тех же кабелей, прокладываемых в воздухе, при температуре, равной температуре земли.


Таблица 1.3.24

ДОПУСТИМЫЙ ДЛИТЕЛЬНЫЙ ТОК ДЛЯ ОДНОЖИЛЬНЫХ КАБЕЛЕЙ

С МЕДНОЙ ЖИЛОЙ С БУМАЖНОЙ ПРОПИТАННОЙ МАСЛОКАНИФОЛЬНОЙ

И НЕСТЕКАЮЩЕЙ МАССАМИ ИЗОЛЯЦИЕЙ В СВИНЦОВОЙ ОБОЛОЧКЕ,

НЕБРОНИРОВАННЫХ, ПРОКЛАДЫВАЕМЫХ В ВОЗДУХЕ

Сечение токопроводящей жилы, кв. мм

Ток <*>, А, для кабелей напряжением, кВ

до 3

20

35

10

85/-

-

-

16

120/-

-

-

25

145/-

105/110

-

35

170/-

125/135

-

50

215/-

155/165

-

70

260/-

185/205

-

95

305/-

220/255

-

120

330/-

245/290

240/265

150

360/-

270/330

265/300

185

385/-

290/360

285/335

240

435/-

320/395

315/380

300

460/-

350/425

340/420

400

485/-

370/450

-

500

505/-

-

-

625

525/-

-

-

800

550/-

-

-

--------------------------------

<*> В числителе указаны токи для кабелей, расположенных в одной плоскости с расстоянием в свету 35 - 125 мм, в знаменателе - для кабелей, расположенных вплотную треугольником.

1.3.17. При смешанной прокладке кабелей допустимые длительные токи должны приниматься для участка трассы с наихудшими условиями охлаждения, если длина его более 10 м. Рекомендуется применять в указанных случаях кабельные вставки большего сечения.

1.3.18. При прокладке нескольких кабелей в земле (включая прокладку в трубах) допустимые длительные токи должны быть уменьшены путем введения коэффициентов, приведенных в табл. 1.3.26. При этом не должны учитываться резервные кабели.

Прокладка нескольких кабелей в земле с расстояниями между ними менее 100 мм в свету не рекомендуется.

1.3.19. Для масло- и газонаполненных одножильных бронированных кабелей, а также других кабелей новых конструкций допустимые длительные токи устанавливаются заводами-изготовителями.


Таблица 1.3.25

ДОПУСТИМЫЙ ДЛИТЕЛЬНЫЙ ТОК

ДЛЯ ОДНОЖИЛЬНЫХ КАБЕЛЕЙ С АЛЮМИНИЕВОЙ ЖИЛОЙ С БУМАЖНОЙ

ПРОПИТАННОЙ МАСЛОКАНИФОЛЬНОЙ И НЕСТЕКАЮЩЕЙ МАССАМИ

ИЗОЛЯЦИЕЙ В СВИНЦОВОЙ ИЛИ АЛЮМИНИЕВОЙ ОБОЛОЧКЕ,

НЕБРОНИРОВАННЫХ, ПРОКЛАДЫВАЕМЫХ В ВОЗДУХЕ

Сечение токопроводящей жилы, кв. мм

Ток <*>, А, для кабелей напряжением, кВ

до 3

20

35

10

65/-

-

-

16

90/-

-

-

25

110/-

80/85

-

35

130/-

95/105

-

50

165/-

120/130

-

70

200/-

140/160

-

95

235/-

170/195

-

120

255/-

190/225

185/205

150

275/-

210/255

205/230

185

295/-

225/275

220/255

240

335/-

245/305

245/290

300

355/-

270/330

260/330

400

375/-

285/350

-

500

390/-

-

-

625

405/-

-

-

800

425/-

-

-

--------------------------------

<*> В числителе указаны токи для кабелей, расположенных в одной плоскости с расстоянием в свету 35 - 125 мм, в знаменателе - для кабелей, расположенных вплотную треугольником.


Таблица 1.3.26

ПОПРАВОЧНЫЙ КОЭФФИЦИЕНТ НА КОЛИЧЕСТВО

РАБОТАЮЩИХ КАБЕЛЕЙ, ЛЕЖАЩИХ РЯДОМ В ЗЕМЛЕ

(В ТРУБАХ ИЛИ БЕЗ ТРУБ)

Расстояние между кабелями в свету, мм

Коэффициент при количестве кабелей

1

2

3

4

5

6

100

1,00

0,90

0,85

0,80

0,78

0,75

200

1,00

0,92

0,87

0,84

0,82

0,81

300

1,00

0,93

0,90

0,87

0,86

0,85

1.3.20. Допустимые длительные токи для кабелей, прокладываемых в блоках, следует определять по эмпирической формуле

                       I = a x b x c x I0,

    где I0 -  допустимый  длительный  ток  для трехжильного кабеля

напряжением 10 кВ с медными или алюминиевыми жилами,  определяемый
по табл.  1.3.27;  a - коэффициент,  выбираемый по табл.  1.3.28 в
зависимости  от  сечения  и  расположения  кабеля  в  блоке;  b  -
коэффициент, выбираемый в зависимости от напряжения кабеля:

Номинальное напряжение кабеля, кВ ......... До 3      6       10
Коэффициент b ............................. 1,09     1,05     1,0

    c - коэффициент,  выбираемый в зависимости  от  среднесуточной
загрузки всего блока:

Среднесуточная загрузка Sср.сут./Sном. ........ 1     0,85    0,7
Коэффициент c ................................. 1     1,07    1,16

Таблица 1.3.27

ДОПУСТИМЫЙ ДЛИТЕЛЬНЫЙ ТОК ДЛЯ КАБЕЛЕЙ 10 КВ

С МЕДНЫМИ ИЛИ АЛЮМИНИЕВЫМИ ЖИЛАМИ СЕЧЕНИЕМ 95 КВ. ММ,

ПРОКЛАДЫВАЕМЫХ В БЛОКАХ

┌─────┬──────────────────────────────────────────────────────────────────────────────┬───┬───────────┐
│Груп-│                            Конфигурация блоков                               │N  │ Ток I0, А │
│па   │                                                                              │ка-│для кабелей│
│     │                                                                              │на-├────┬──────┤
│     │                                                                              │ла │мед-│алюми-│
│     │                                                                              │   │ных │ниевых│
├─────┼──────────────────────────────────────────────────────────────────────────────┼───┼────┼──────┤
│I    │┌─┐                                                                           │ 1 │ 191│  147 │
│     ││1│                                                                           │   │    │      │
│     │└─┘                                                                           │   │    │      │
├─────┼──────────────────────────────────────────────────────────────────────────────┼───┼────┼──────┤
│II   │┌─┬─┐                                                                         │ 2 │ 173│  133 │
│     ││2│ │                                                                         │   │    │      │
│     │├─┼─┤      ┌─┐                   ┌─┬─┐                                        │   │    │      │
│     ││ │3│      │2│                   │3│3│                                        │   │    │      │
│     │├─┼─┤      ├─┤        ┌─┬─┐      ├─┼─┤                                        ├───┼────┼──────┤
│     ││3│ │      │3│        │3│3│      │ │ │                                        │ 3 │ 167│  129 │
│     │├─┼─┤      ├─┤        ├─┼─┤      ├─┼─┤                                        │   │    │      │
│     ││ │2│      │2│        │3│3│      │3│3│                                        │   │    │      │
│     │└─┴─┘      └─┘        └─┴─┘      └─┴─┘                                        │   │    │      │
├─────┼──────────────────────────────────────────────────────────────────────────────┼───┼────┼──────┤
│III  │┌─┬─┬─┐                                                                       │ 2 │ 154│  119 │
│     ││2│ │2│                                                                       │   │    │      │
│     │├─┼─┼─┤                                                                       │   │    │      │
│     ││2│ │2│                                                                       │   │    │      │
│     │├─┼─┼─┤    ┌─┬─┬─┐                                                            │   │    │      │
│     ││ │ │ │    │2│ │2│                                                            │   │    │      │
│     │├─┼─┼─┤    ├─┼─┼─┤                                                            │   │    │      │
│     ││2│ │2│    │ │ │ │                                                            │   │    │      │
│     │├─┼─┼─┤    ├─┼─┼─┤                                                            │   │    │      │
│     ││2│ │2│    │2│ │2│                                                            │   │    │      │
│     │└─┴─┴─┘    └─┴─┴─┘                                                            │   │    │      │
├─────┼──────────────────────────────────────────────────────────────────────────────┼───┼────┼──────┤
│IV   │┌─┬─┐                                                                         │ 2 │ 147│  113 │
│     ││2│2│                                                                         │   │    │      │
│     │├─┼─┤      ┌─┬─┐                                                              │   │    │      │
│     ││3│3│      │2│2│                                                              │   │    │      │
│     │├─┼─┤      ├─┼─┤                                                              ├───┼────┼──────┤
│     ││3│3│      │3│3│                                                              │ 3 │ 138│  106 │
│     │├─┼─┤      ├─┼─┤                                                              │   │    │      │
│     ││2│2│      │2│2│                                                              │   │    │      │
│     │└─┴─┘      └─┴─┘                                                              │   │    │      │
├─────┼──────────────────────────────────────────────────────────────────────────────┼───┼────┼──────┤
│V    │           ┌─┬─┐                                                              │ 2 │ 143│  110 │
│     │           │2│2│                                                              │   │    │      │
│     │           ├─┼─┤                                                              │   │    │      │
│     │           │3│3│                                                              │   │    │      │
│     │           ├─┼─┤      ┌─┬─┐                                                   │   │    │      │
│     │           │3│3│      │2│2│                                                   ├───┼────┼──────┤
│     │           ├─┼─┤      ├─┼─┤               ┌─┬─┬─┬─┬─┐                         │ 3 │ 135│  104 │
│     │           │ │ │      │3│3│               │2│2│ │2│2│                         │   │    │      │
│     │┌─┬─┬─┐    ├─┼─┤      ├─┼─┤               ├─┼─┼─┼─┼─┤                         │   │    │      │
│     ││2│3│2│    │ │ │      │4│4│               │2│ │ │ │2│                         │   │    │      │
│     │├─┼─┼─┤    ├─┼─┤      ├─┼─┤      ┌─┬─┬─┐  ├─┼─┼─┼─┼─┤                         │   │    │      │
│     ││3│ │3│    │3│3│      │4│4│      │2│3│2│  │ │ │ │ │ │                         ├───┼────┼──────┤
│     │├─┼─┼─┤    ├─┼─┤      ├─┼─┤      ├─┼─┼─┤  ├─┼─┼─┼─┼─┤                         │ 4 │ 131│  101 │
│     ││3│ │3│    │3│2│      │3│3│      │3│ │3│  │2│ │ │ │2│                         │   │    │      │
│     │├─┼─┼─┤    ├─┼─┤      ├─┼─┤      ├─┼─┼─┤  ├─┼─┼─┼─┼─┤                         │   │    │      │
│     ││2│3│2│    │2│2│      │2│2│      │2│3│2│  │2│2│ │2│2│                         │   │    │      │
│     │└─┴─┴─┘    └─┴─┘      └─┴─┘      └─┴─┴─┘  └─┴─┴─┴─┴─┘                         │   │    │      │
├─────┼──────────────────────────────────────────────────────────────────────────────┼───┼────┼──────┤
│VI   │┌─┬─┬─┐                                                                       │ 2 │ 140│  103 │
│     ││2│3│2│                                                                       ├───┼────┼──────┤
│     │├─┼─┼─┤                                                                       │ 3 │ 132│  102 │
│     ││3│4│3│                                                                       │   │    │      │
│     │├─┼─┼─┤                                                                       ├───┼────┼──────┤
│     ││2│3│2│                                                                       │ 4 │ 118│   91 │
│     │└─┴─┴─┘                                                                       │   │    │      │
├─────┼──────────────────────────────────────────────────────────────────────────────┼───┼────┼──────┤
│VII  │┌─┬─┐                                                                         │ 2 │ 136│  105 │
│     ││2│2│                                                                         │   │    │      │
│     │├─┼─┤                                                                         │   │    │      │
│     ││3│3│                                                                         │   │    │      │
│     │├─┼─┤                                                                         │   │    │      │
│     ││3│3│                                                                         ├───┼────┼──────┤
│     │├─┼─┤                                                                         │ 3 │ 132│  102 │
│     ││4│4│                                                                         │   │    │      │
│     │├─┼─┤                                                                         │   │    │      │
│     ││4│4│                                                                         │   │    │      │
│     │├─┼─┤                                                                         │   │    │      │
│     ││3│3│                                                                         ├───┼────┼──────┤
│     │├─┼─┤                                                                         │ 4 │ 119│   92 │
│     ││3│3│                                                                         │   │    │      │
│     │├─┼─┤                                                                         │   │    │      │
│     ││2│2│                                                                         │   │    │      │
│     │└─┴─┘                                                                         │   │    │      │
├─────┼──────────────────────────────────────────────────────────────────────────────┼───┼────┼──────┤
│VIII │                      ┌─┬─┬─┬─┬─┐┌─┬─┬─┬─┐┌─┬─┬─┐                             │ 2 │ 135│  104 │
│     │                      │2│3│3│3│2││2│3│3│2││2│3│2│                             │   │    │      │
│     │┌─┬─┬─┬─┬─┐┌─┬─┬─┬─┐  ├─┼─┼─┼─┼─┤├─┼─┼─┼─┤├─┼─┼─┤    ┌─┬─┬─┐                  │   │    │      │
│     ││2│3│3│3│2││2│3│3│2│  │3│ │ │ │3││3│ │ │3││3│ │3│    │2│3│2│                  ├───┼────┼──────┤
│     │├─┼─┼─┼─┼─┤├─┼─┼─┼─┤  ├─┼─┼─┼─┼─┤├─┼─┼─┼─┤├─┼─┼─┤    ├─┼─┼─┤  ┌─┬─┬─┬─┐┌─┬─┬─┐│ 3 │ 124│   96 │
│     ││3│ │ │ │3││3│ │ │3│  │3│ │ │ │3││3│ │ │3││3│ │3│    │3│ │3│  │2│3│3│2││2│3│2││   │    │      │
│     │├─┼─┼─┼─┼─┤├─┼─┼─┼─┤  ├─┼─┼─┼─┼─┤├─┼─┼─┼─┤├─┼─┼─┤    ├─┼─┼─┤  ├─┼─┼─┼─┤├─┼─┼─┤│   │    │      │
│     ││3│ │ │ │3││3│ │ │3│  │3│ │ │ │3││3│ │ │3││3│ │3│    │3│ │3│  │3│ │ │3││3│4│3││   │    │      │
│     │├─┼─┼─┼─┼─┤├─┼─┼─┼─┤  ├─┼─┼─┼─┼─┤├─┼─┼─┼─┤├─┼─┼─┤    ├─┼─┼─┤  ├─┼─┼─┼─┤├─┼─┼─┤├───┼────┼──────┤
│     ││3│ │ │ │3││3│ │ │3│  │3│ │ │ │3││3│ │ │3││3│ │3│    │3│ │3│  │3│ │ │3││3│4│3││ 4 │ 104│   80 │
│     │├─┼─┼─┼─┼─┤├─┼─┼─┼─┤  ├─┼─┼─┼─┼─┤├─┼─┼─┼─┤├─┼─┼─┤    ├─┼─┼─┤  ├─┼─┼─┼─┤├─┼─┼─┤│   │    │      │
│     ││2│3│3│3│2││2│3│3│2│  │2│3│3│3│2││2│3│3│2││2│3│2│    │2│3│2│  │2│3│3│2││2│3│2││   │    │      │
│     │└─┴─┴─┴─┴─┘└─┴─┴─┴─┘  └─┴─┴─┴─┴─┘└─┴─┴─┴─┘└─┴─┴─┘    └─┴─┴─┘  └─┴─┴─┴─┘└─┴─┴─┘│   │    │      │
├─────┼──────────────────────────────────────────────────────────────────────────────┼───┼────┼──────┤
│IX   │                                                              ┌─┬─┬─┐         │ 2 │ 135│  104 │
│     │                                                              │2│3│2│         │   │    │      │
│     │                                                              ├─┼─┼─┤         │   │    │      │
│     │                                                              │3│4│3│         │   │    │      │
│     │┌─┬─┬─┬─┐  ┌─┬─┬─┐                                            ├─┼─┼─┤         │   │    │      │
│     ││2│3│3│2│  │2│3│2│                                            │3│ │3│         ├───┼────┼──────┤
│     │├─┼─┼─┼─┤  ├─┼─┼─┤    ┌─┬─┬─┬─┐  ┌─┬─┬─┐  ┌─┬─┬─┐             ├─┼─┼─┤         │ 3 │ 118│   91 │
│     ││3│4│4│3│  │3│4│3│    │2│3│3│2│  │2│3│2│  │2│3│2│             │3│ │3│         │   │    │      │
│     │├─┼─┼─┼─┤  ├─┼─┼─┤    ├─┼─┼─┼─┤  ├─┼─┼─┤  ├─┼─┼─┤    ┌─┬─┬─┬─┐├─┼─┼─┤         │   │    │      │
│     ││3│ │ │3│  │3│ │3│    │3│4│4│3│  │3│4│3│  │3│4│3│    │2│3│3│2││3│ │3│         │   │    │      │
│     │├─┼─┼─┼─┤  ├─┼─┼─┤    ├─┼─┼─┼─┤  ├─┼─┼─┤  ├─┼─┼─┤    ├─┼─┼─┼─┤├─┼─┼─┤         │   │    │      │
│     ││3│ │ │3│  │3│ │3│    │3│ │ │3│  │3│4│3│  │3│ │3│    │3│4│4│3││3│ │3│         ├───┼────┼──────┤
│     │├─┼─┼─┼─┤  ├─┼─┼─┤    ├─┼─┼─┼─┤  ├─┼─┼─┤  ├─┼─┼─┤    ├─┼─┼─┼─┤├─┼─┼─┤         │ 4 │ 100│   77 │
│     ││3│4│4│3│  │3│4│3│    │3│4│4│3│  │3│4│3│  │3│4│3│    │3│4│4│3││3│4│3│         │   │    │      │
│     │├─┼─┼─┼─┤  ├─┼─┼─┤    ├─┼─┼─┼─┤  ├─┼─┼─┤  ├─┼─┼─┤    ├─┼─┼─┼─┤├─┼─┼─┤         │   │    │      │
│     ││2│3│3│2│  │2│3│2│    │2│3│3│2│  │2│3│2│  │2│3│2│    │2│3│3│2││2│3│2│         │   │    │      │
│     │└─┴─┴─┴─┘  └─┴─┴─┘    └─┴─┴─┴─┘  └─┴─┴─┘  └─┴─┴─┘    └─┴─┴─┴─┘└─┴─┴─┘         │   │    │      │
├─────┼──────────────────────────────────────────────────────────────────────────────┼───┼────┼──────┤
│X    │┌─┬─┬─┐                                                                       │ 2 │ 133│  102 │
│     ││2│3│2│                                                                       │   │    │      │
│     │├─┼─┼─┤                                                                       │   │    │      │
│     ││3│4│3│                                                                       ├───┼────┼──────┤
│     │├─┼─┼─┤                                                                       │ 3 │ 116│   90 │
│     ││3│4│3│                                                                       │   │    │      │
│     │├─┼─┼─┤                                                                       │   │    │      │
│     ││3│4│3│                                                                       │   │    │      │
│     │├─┼─┼─┤                                                                       ├───┼────┼──────┤
│     ││3│4│3│                                                                       │ 4 │  81│   62 │
│     │├─┼─┼─┤                                                                       │   │    │      │
│     ││2│3│2│                                                                       │   │    │      │
│     │└─┴─┴─┘                                                                       │   │    │      │
├─────┼──────────────────────────────────────────────────────────────────────────────┼───┼────┼──────┤
│XI   │                                          ┌─┬─┬─┐                             │ 2 │ 129│   99 │
│     │                                          │2│3│2│                             │   │    │      │
│     │                                          ├─┼─┼─┤                             │   │    │      │
│     │                                          │3│4│3│                             │   │    │      │
│     │┌─┬─┬─┬─┐                                 ├─┼─┼─┤                             │   │    │      │
│     ││2│3│3│2│                                 │3│4│3│                             ├───┼────┼──────┤
│     │├─┼─┼─┼─┤  ┌─┬─┬─┬─┬─┐┌─┬─┬─┬─┬─┐┌─┬─┬─┬─┐├─┼─┼─┤                             │ 3 │ 114│   88 │
│     ││3│4│4│3│  │3│3│3│3│3││2│3│3│3│2││2│3│3│2││3│4│3│                             │   │    │      │
│     │├─┼─┼─┼─┤  ├─┼─┼─┼─┼─┤├─┼─┼─┼─┼─┤├─┼─┼─┼─┤├─┼─┼─┤                             │   │    │      │
│     ││3│4│4│3│  │3│4│4│4│3││3│4│ │4│3││3│4│4│3││3│4│3│                             │   │    │      │
│     │├─┼─┼─┼─┤  ├─┼─┼─┼─┼─┤├─┼─┼─┼─┼─┤├─┼─┼─┼─┤├─┼─┼─┤                             │   │    │      │
│     ││3│4│4│3│  │3│4│ │4│3││3│4│ │4│3││3│4│4│3││3│4│3│                             ├───┼────┼──────┤
│     │├─┼─┼─┼─┤  ├─┼─┼─┼─┼─┤├─┼─┼─┼─┼─┤├─┼─┼─┼─┤├─┼─┼─┤                             │ 4 │  79│   55 │
│     ││3│4│4│3│  │3│4│4│4│3││3│4│ │4│3││3│4│4│3││3│4│3│                             │   │    │      │
│     │├─┼─┼─┼─┤  ├─┼─┼─┼─┼─┤├─┼─┼─┼─┼─┤├─┼─┼─┼─┤├─┼─┼─┤                             │   │    │      │
│     ││2│3│3│2│  │3│3│3│3│3││2│3│3│3│2││2│3│3│2││2│3│2│                             │   │    │      │
│     │└─┴─┴─┴─┘  └─┴─┴─┴─┴─┘└─┴─┴─┴─┴─┘└─┴─┴─┴─┘└─┴─┴─┘                             │   │    │      │
└─────┴──────────────────────────────────────────────────────────────────────────────┴───┴────┴──────┘

Таблица 1.3.28

ПОПРАВОЧНЫЙ КОЭФФИЦИЕНТ A НА СЕЧЕНИЕ КАБЕЛЯ

Сечение токопроводящей жилы, кв. мм

Коэффициент для номера канала в блоке

1

2

3

4

25

0,44

0,46

0,47

0,51

35

0,54

0,57

0,57

0,60

50

0,67

0,69

0,69

0,71

70

0,81

0,84

0,84

0,85

95

1,00

1,00

1,00

1,00

120

1,14

1,13

1,13

1,12

150

1,33

1,30

1,29

1,26

185

1,50

1,46

1,45

1,38

240

1,78

1,70

1,68

1,55

Резервные кабели допускается прокладывать в незанумерованных каналах блока, если они работают, когда рабочие кабели отключены.

1.3.21. Допустимые длительные токи для кабелей, прокладываемых в двух параллельных блоках одинаковой конфигурации, должны уменьшаться путем умножения на коэффициенты, выбираемые в зависимости от расстояния между блоками:

Расстояние между блоками, мм ..  500  1000  1500  2000  2500  3000
Коэффициент ................... 0,85  0,89  0,91  0,93  0,95  0,96

ДОПУСТИМЫЕ ДЛИТЕЛЬНЫЕ ТОКИ ДЛЯ НЕИЗОЛИРОВАННЫХ ПРОВОДОВ

И ШИН

1.3.22. Допустимые длительные токи для неизолированных проводов и окрашенных шин приведены в табл. 1.3.29 - 1.3.35. Они приняты из расчета допустимой температуры их нагрева +70 град. C при температуре воздуха +25 град. C.

Для полых алюминиевых проводов марок ПА500 и ПА600 допустимый длительный ток следует принимать:

Марка провода ................................ ПА500       ПА6000
Ток, А ....................................... 1340         1680

1.3.23. При расположении шин прямоугольного сечения плашмя токи, приведенные в табл. 1.3.33, должны быть уменьшены на 5% для шин с шириной полос до 60 мм и на 8% для шин с шириной полос более 60 мм.

1.3.24. При выборе шин больших сечений необходимо выбирать наиболее экономичные по условиям пропускной способности конструктивные решения, обеспечивающие наименьшие добавочные потери от поверхностного эффекта и эффекта близости и наилучшие условия охлаждения (уменьшение количества полос в пакете, рациональная конструкция пакета, применение профильных шин и т.п.).


Таблица 1.3.29

ДОПУСТИМЫЙ ДЛИТЕЛЬНЫЙ ТОК ДЛЯ НЕИЗОЛИРОВАННЫХ

ПРОВОДОВ ПО ГОСТ 839-80

Номинальное сечение, кв. мм

Сечение (алюминий / сталь), кв. мм

Ток, А для проводов марок

АС, АСКС, АСК, АСКП

М

А и АКП

М

А и АКП

вне помещений

внутри помещений

вне помещений

внутри помещений

10

10/1,8

84

53

95

-

60

-

16

16/2,7

111

79

133

105

102

75

25

25/4,2

142

109

183

136

137

106

35

35/6,2

175

135

223

170

173

130

50

50/8

210

165

275

215

219

165

70

70/11

265

210

337

265

268

210

95

95/16

330

260

422

320

341

255

120

120/19

390

313

485

375

395

300

120/27

375

-

150

150/19

450

365

570

440

465

355

150/24

450

365

150/34

450

-

185

185/24

520

430

650

500

540

410

185/29

510

425

185/43

515

-

240

240/32

605

505

760

590

685

490

240/39

610

505

240/56

610

-

300

300/39

710

600

880

680

740

570

300/48

690

585

300/66

680

-

330

330/27

730

-

-

-

-

-

400

400/22

830

713

1050

815

895

690

400/51

825

705

400/64

860

-

500

500/27

960

830

-

980

-

820

500/64

945

815

600

600/72

1050

920

-

1100

-

955

700

700/86

1180

1040

-

-

-

-


Таблица 1.3.30

ДОПУСТИМЫЙ ДЛИТЕЛЬНЫЙ ТОК ДЛЯ ШИН КРУГЛОГО

И ТРУБЧАТОГО СЕЧЕНИЙ

Диаметр, мм

Круглые шины

Медные трубы

Алюминиевые трубы

Стальные трубы

Ток <*>, А

внутренний и наружный диаметры, мм

ток, А

внутренний и наружный диаметры, мм

ток, А

условный проход, мм

толщина стенки, мм

наружный диаметр, мм

переменный ток, А

медные

алюминиевые

без разреза

с продольным разрезом

6

155/155

120/120

12/15

340

13/16

295

8

2,8

13,5

75

-

7

195/195

150/150

14/18

460

17/20

345

10

2,8

17,0

90

-

8

235/235

180/180

16/20

505

18/22

425

15

3,2

21,3

118

-

10

320/320

245/245

18/22

555

27/30

500

20

3,2

26,8

145

-

12

415/415

320/320

20/24

600

26/30

575

25

4,0

33,5

180

-

14

505/505

390/390

22/26

650

25/30

640

32

4,0

42,3

220

-

15

565/565

435/435

25/30

830

36/40

765

40

4,0

48,0

255

-

16

610/615

475/475

29/34

925

35/40

850

50

4,5

60,0

320

-

18

720/725

560/560

35/40

1100

40/45

935

65

4,5

75,5

390

-

19

780/785

605/610

40/45

1200

45/50

1040

80

4,5

88,5

455

20

835/840

650/655

45/50

1330

50/55

1150

100

5,0

114

670

770

21

900/905

695/700

49/55

1580

54/60

1340

125

5,5

140

800

890

22

955/965

740/745

53/60

1860

64/70

1545

150

5,5

165

900

1000

25

1140/1165

885/900

62/70

2295

74/80

1770

-

-

-

-

-

27

1270/1290

980/1000

72/80

2610

72/80

2035

-

-

-

-

-

28

1325/1360

1025/1050

75/85

3070

75/85

2400

-

-

-

-

-

30

1450/1490

1120/1155

90/95

2460

90/95

1925

-

-

-

-

-

35

1770/1865

1370/1450

95/100

3060

90/100

2840

-

-

-

-

-

38

1960/2100

1510/1620

-

-

-

-

-

-

-

-

-

40

2080/2260

1610/1750

-

-

-

-

-

-

-

-

-

42

2200/2430

1700/1870

-

-

-

-

-

-

-

-

-

45

2380/2670

1850/2060

-

-

-

-

-

-

-

-

-

--------------------------------

<*> В числителе приведены нагрузки при переменном токе, в знаменателе - при постоянном.


Таблица 1.3.31

ДОПУСТИМЫЙ ДЛИТЕЛЬНЫЙ ТОК ДЛЯ ШИН ПРЯМОУГОЛЬНОГО СЕЧЕНИЯ

Размеры, мм

Медные шины

Алюминиевые шины

Стальные шины

Ток <*>, А, при количестве полос на полюс или фазу

Размеры, мм

Ток <*>, А

1

2

3

4

1

2

3

4

15 x 3

210

-

-

-

165

-

-

-

16 x 2,5

55/70

20 x 3

275

-

-

-

215

-

-

-

20 x 2,5

60/90

25 x 3

340

-

-

-

265

-

-

-

25 x 2,5

75/110

30 x 4

475

-

-

-

365/370

-

-

-

20 x 3

65/100

40 x 4

625

-/1090

-

-

480

-/855

-

-

25 x 3

80/120

40 x 5

700/705

-/1250

-

-

540/545

-/965

-

-

30 x 3

95/140

50 x 5

860/870

-/1525

-/1895

-

665/670

-/1180

-/1470

-

40 x 3

125/190

50 x 6

955/960

-/1700

-/2145

-

740/745

-/1315

-/1655

-

50 x 3

155/230

60 x 6

1125/1145

1740/1990

2240/2495

-

870/880

1350/1555

1720/1940

-

60 x 3

185/280

80 x 6

1480/1510

2110/2630

2720/3220

-

1150/1170

1630/2055

2100/2460

-

70 x 3

215/320

100 x 6

1810/1875

2470/3245

3170/3940

-

1425/1455

1935/2515

2500/3040

-

75 x 3

230/345

60 x 8

1320/1345

2160/2485

2790/3020

-

1025/1040

1680/1840

2180/2330

-

80 x 3

245/365

80 x 8

1690/1755

2620/3095

3370/3850

-

1320/1355

2040/2400

2620/2975

-

90 x 3

275/410

100 x 8

2080/2180

3060/3810

3930/4690

-

1625/1690

2390/2945

3050/3620

-

100 x 3

305/460

120 x 8

2400/2600

3400/4400

4340/5600

-

1900/2040

2650/3350

3380/4250

-

20 x 4

70/115

60 x 10

1475/1525

2560/2725

3300/3530

-

1155/1180

2010/2110

2650/2720

-

22 x 4

75/125

80 x 10

1900/1990

3100/3510

3990/4450

-

1480/1540

2410/2735

3100/3440

-

25 x 4

85/140

100 x 10

2310/2470

3610/4325

4650/5385

5300/6060

1820/1910

2860/3350

3650/4160

4150/4400

30 x 4

100/165

120 x 10

2650/2950

4100/5000

5200/6250

5900/6800

2070/2300

3200/3900

4100/4860

4650/5200

40 x 4

130/220

50 x 4

165/270

60 x 4

195/325

70 x 4

225/375

80 x 4

260/430

90 x 4

290/480

100 x 4

325/535

--------------------------------

<*> В числителе приведены значения переменного тока, в знаменателе - постоянного.


Таблица 1.3.32

ДОПУСТИМЫЙ ДЛИТЕЛЬНЫЙ ТОК ДЛЯ НЕИЗОЛИРОВАННЫХ

БРОНЗОВЫХ И СТАЛЕБРОНЗОВЫХ ПРОВОДОВ

Провод

Марка провода

Ток <*>, А

Бронзовый

Б-50

215

Б-70

265

Б-95

330

Б-120

380

Б-150

430

Б-185

500

Б-240

600

Б-300

700

Сталебронзовый

БС-185

515

БС-240

640

БС-300

750

БС-400

890

БС-500

980

    --------------------------------
    <*> Токи даны для бронзы с удельным сопротивлением ро   = 0,03
                                                         20
Ом x кв. мм/м.

Таблица 1.3.33

ДОПУСТИМЫЙ ДЛИТЕЛЬНЫЙ ТОК ДЛЯ НЕИЗОЛИРОВАННЫХ

СТАЛЬНЫХ ПРОВОДОВ

Марка провода

Ток, А

Марка провода

Ток, А

ПСО-3

23

ПС-25

60

ПСО-3,5

26

ПС-35

75

ПСО-4

30

ПС-50

90

ПСО-5

35

ПС-70

125

ПС-95

135


Таблица 1.3.34

ДОПУСТИМЫЙ ДЛИТЕЛЬНЫЙ ТОК ДЛЯ ЧЕТЫРЕХПОЛОСНЫХ ШИН

С РАСПОЛОЖЕНИЕМ ПОЛОС ПО СТОРОНАМ КВАДРАТА

("ПОЛЫЙ ПАКЕТ")

Размеры, мм

Поперечное сечение четырехполосной шины, кв. мм

Ток, А, на пакет шин

h

b

h1

H

медных

алюминиевых

80

8

140

157

2560

5750

4550

80

10

144

160

3200

6400

5100

100

8

160

185

3200

7000

5550

100

10

164

188

4000

7700

6200

120

10

184

216

4800

9050

7300


Таблица 1.3.35

ДОПУСТИМЫЙ ДЛИТЕЛЬНЫЙ ТОК ДЛЯ ШИН КОРОБЧАТОГО СЕЧЕНИЯ

Размеры, мм

Поперечное сечение одной шины, кв. мм

Ток, А, на две шины

a

b

c

r

медные

алюминиевые

75

35

4

6

520

2730

-

75

35

5,5

6

695

3250

2670

100

45

4,5

8

775

3620

2820

100

45

6

8

1010

4300

3500

125

55

6,5

10

1370

5500

4640

150

65

7

10

1785

7000

5650

175

80

8

12

2440

8550

6430

200

90

10

14

3435

9900

7550

200

90

12

16

4040

10500

8830

225

105

12,5

16

4880

12500

10300

250

115

12,5

16

5450

-

10800


ВЫБОР СЕЧЕНИЯ ПРОВОДНИКОВ ПО ЭКОНОМИЧЕСКОЙ

ПЛОТНОСТИ ТОКА

1.3.25. Сечения проводников должны быть проверены по экономической плотности тока. Экономически целесообразное сечение S, кв. мм, определяется из соотношения

                                  I
                             S = ---,
                                 Jэк

где I - расчетный ток в час максимума энергосистемы, А; Jэк - нормированное значение экономической плотности тока, А/кв. мм, для заданных условий работы, выбираемое по табл. 1.3.36.

Сечение, полученное в результате указанного расчета, округляется до ближайшего стандартного сечения. Расчетный ток принимается для нормального режима работы, т.е. увеличение тока в послеаварийных и ремонтных режимах сети не учитывается.

1.3.26. Выбор сечений проводов линий электропередачи постоянного и переменного тока напряжением 330 кВ и выше, а также линий межсистемных связей и мощных жестких и гибких токопроводов, работающих с большим числом часов использования максимума, производится на основе технико-экономических расчетов.

1.3.27. Увеличение количества линий или цепей сверх необходимого по условиям надежности электроснабжения в целях удовлетворения экономической плотности тока производится на основе технико-экономического расчета. При этом во избежание увеличения количества линий или цепей допускается двукратное превышение нормированных значений, приведенных в табл. 1.3.36.


Таблица 1.3.36

ЭКОНОМИЧЕСКАЯ ПЛОТНОСТЬ ТОКА

Проводники

Экономическая плотность тока, А/кв. мм, при числе часов использования максимума нагрузки в год

более 1000 до 3000

более 3000 до 5000

более 5000

Неизолированные провода и шины:

медные

2,5

2,1

1,8

алюминиевые

1,3

1,1

1,0

Кабели с бумажной и провода с резиновой и поливинилхлоридной изоляцией с жилами:

медными

3,0

2,5

2,0

алюминиевыми

1,6

1,4

1,2

Кабели с резиновой и пластмассовой изоляцией с жилами:

медными

3,5

3,1

2,7

алюминиевыми

1,9

1,7

1,6

В технико-экономических расчетах следует учитывать все вложения в дополнительную линию, включая оборудование и камеры распределительных устройств на обоих концах линий. Следует также проверять целесообразность повышения напряжения линии.

Данными указаниями следует руководствоваться также при замене существующих проводов проводами большего сечения или при прокладке дополнительных линий для обеспечения экономической плотности тока при росте нагрузки. В этих случаях должна учитываться также полная стоимость всех работ по демонтажу и монтажу оборудования линии, включая стоимость аппаратов и материалов.

1.3.28. Проверке по экономической плотности тока не подлежат:

сети промышленных предприятий и сооружений напряжением до 1 кВ при числе часов использования максимума нагрузки предприятий до 4000 - 5000;

ответвления к отдельным электроприемникам напряжением до 1 кВ, а также осветительные сети промышленных предприятий, жилых и общественных зданий;

сборные шины электроустановок и ошиновка в пределах открытых и закрытых распределительных устройств всех напряжений;

проводники, идущие к резисторам, пусковым реостатам и т.п.;

сети временных сооружений, а также устройства со сроком службы 3 - 5 лет.

1.3.29. При пользовании табл. 1.3.36 необходимо руководствоваться следующим (см. также 1.3.27):

1. При максимуме нагрузки в ночное время экономическая плотность тока увеличивается на 40%.

2. Для изолированных проводников сечением 16 кв. мм и менее экономическая плотность тока увеличивается на 40%.

3. Для линий одинакового сечения с n ответвляющимися нагрузками экономическая плотность тока в начале линии может быть увеличена в ky раз, причем ky определяется из выражения

                     ------------------------------
                    /           2
                   /           J  x L
                  /             1
           ky = \/ --------------------------------,
                    2         2              2
                   I  x l  + I  x l  + ... +I  x l
                    1    1    2    2         n    n

    где I ,  I , ..., I  -  нагрузки  отдельных  участков   линии;
         1    2        n
l , l , ..,  l  - длины отдельных участков линии; L - полная длина
 1   2        n
линии.
    4. При выборе сечений проводников для  питания  n  однотипных,
взаиморезервируемых     электроприемников    (например,    насосов
водоснабжения,  преобразовательных агрегатов и т.д.), из которых m
одновременно  находятся  в  работе,  экономическая  плотность тока
может быть увеличена против значений,  приведенных в табл. 1.3.36,
в k  раз, где k  равно:
   n           n

                                  ---
                                 / n
                          k  = \/ ---.
                           n       m

1.3.30. Сечение проводов ВЛ 35 кВ в сельской местности, питающих понижающие подстанции 35/6 - 10 кВ с трансформаторами с регулированием напряжения под нагрузкой, должно выбираться по экономической плотности тока. Расчетную нагрузку при выборе сечений проводов рекомендуется принимать на перспективу в 5 лет, считая от года ввода ВЛ в эксплуатацию. Для ВЛ 35 кВ, предназначенных для резервирования в сетях 35 кВ в сельской местности, должны применяться минимальные по длительно допустимому току сечения проводов, исходя из обеспечения питания потребителей электроэнергии в послеаварийных и ремонтных режимах.

1.3.31. Выбор экономических сечений проводов воздушных и жил кабельных линий, имеющих промежуточные отборы мощности, следует производить для каждого из участков, исходя из соответствующих расчетных токов участков. При этом для соседних участков допускается принимать одинаковое сечение провода, соответствующее экономическому для наиболее протяженного участка, если разница между значениями экономического сечения для этих участков находится в пределах одной ступени по шкале стандартных сечений. Сечения проводов на ответвлениях длиной до 1 км принимаются такими же, как на ВЛ, от которой производится ответвление. При большей длине ответвления экономическое сечение определяется по расчетной нагрузке этого ответвления.

1.3.32. Для линий электропередачи напряжением 6 - 20 кВ приведенные в табл. 1.3.36 значения плотности тока допускается применять лишь тогда, когда они не вызывают отклонения напряжения у приемников электроэнергии сверх допустимых пределов с учетом применяемых средств регулирования напряжения и компенсации реактивной мощности.


ПРОВЕРКА ПРОВОДНИКОВ ПО УСЛОВИЯМ КОРОНЫ И РАДИОПОМЕХ

1.3.33. При напряжении 35 кВ и выше проводники должны быть проверены по условиям образования короны с учетом среднегодовых значений плотности и температуры воздуха на высоте расположения данной электроустановки над уровнем моря, приведенного радиуса проводника, а также коэффициента негладкости проводников.

При этом наибольшая напряженность поля у поверхности любого из проводников, определенная при среднем эксплуатационном напряжении, должна быть не более 0,9 начальной напряженности электрического поля, соответствующей появлению общей короны.

Проверку следует проводить в соответствии с действующими руководящими указаниями.

Кроме того, для проводников необходима проверка по условиям допустимого уровня радиопомех от короны.


Утверждена

Главтехуправлением

Минэнерго СССР

26 февраля 1974 года

Согласована

с Госстроем СССР

5 октября 1973 года

Глава 1.4. ВЫБОР ЭЛЕКТРИЧЕСКИХ АППАРАТОВ И ПРОВОДНИКОВ

ПО УСЛОВИЯМ КОРОТКОГО ЗАМЫКАНИЯ


ОБЛАСТЬ ПРИМЕНЕНИЯ

1.4.1. Настоящая глава Правил распространяется на выбор и применение по условиям КЗ электрических аппаратов и проводников в электроустановках переменного тока частотой 50 Гц, напряжением до и выше 1 кВ.


ОБЩИЕ ТРЕБОВАНИЯ

1.4.2. По режиму КЗ должны проверяться (исключения см. в 1.4.3):

1. В электроустановках выше 1 кВ:

а) электрические аппараты, токопроводы, кабели и другие проводники, а также опорные и несущие конструкции для них;

б) воздушные линии электропередачи при ударном токе КЗ 50 кА и более для предупреждения схлестывания проводов при динамическом действии токов КЗ.

Кроме того, для линий с расщепленными проводами должны быть проверены расстояния между распорками расщепленных проводов для предупреждения повреждения распорок и проводов при схлестывании.

Провода ВЛ, оборудованные устройствами быстродействующего автоматического повторного включения, следует проверять и на термическую стойкость.

2. В электроустановках до 1 кВ - только распределительные щиты, токопроводы и силовые шкафы. Трансформаторы тока по режиму КЗ не проверяются.

Аппараты, которые предназначены для отключения токов КЗ или могут по условиям своей работы включать короткозамкнутую цепь, должны, кроме того, обладать способностью производить эти операции при всех возможных токах КЗ.

Стойкими при токах КЗ являются те аппараты и проводники, которые при расчетных условиях выдерживают воздействия этих токов, не подвергаясь электрическим, механическим и иным разрушениям или деформациям, препятствующим их дальнейшей нормальной эксплуатации.

1.4.3. По режиму КЗ при напряжении выше 1 кВ не проверяются:

1. Аппараты и проводники, защищенные плавкими предохранителями с вставками на номинальный ток до 60 А, - по электродинамической стойкости.

2. Аппараты и проводники, защищенные плавкими предохранителями независимо от их номинального тока и типа, - по термической стойкости.

Цепь считается защищенной плавким предохранителем, если его отключающая способность выбрана в соответствии с требованиями настоящих Правил и он способен отключить наименьший возможный аварийный ток в данной цепи.

3. Проводники в цепях к индивидуальным электроприемникам, в том числе к цеховым трансформаторам общей мощностью до 2,5 МВ x А и с высшим напряжением до 20 кВ, если соблюдены одновременно следующие условия:

а) в электрической или технологической части предусмотрена необходимая степень резервирования, выполненного так, что отключение указанных электроприемников не вызывает расстройства технологического процесса;

б) повреждение проводника при КЗ не может вызвать взрыва или пожара;

в) возможна замена проводника без значительных затруднений.

4. Проводники к индивидуальным электроприемникам, указанным в п. 3, а также к отдельным небольшим распределительным пунктам, если такие электроприемники и распределительные пункты являются неответственными по своему назначению и если для них выполнено хотя бы только условие, приведенное в п. 3 "б".

5. Трансформаторы тока в цепях до 20 кВ, питающих трансформаторы или реактированные линии, в случаях, когда выбор трансформаторов тока по условиям КЗ требует такого завышения коэффициентов трансформации, при котором не может быть обеспечен необходимый класс точности присоединенных измерительных приборов (например, расчетных счетчиков); при этом на стороне высшего напряжения в цепях силовых трансформаторов рекомендуется избегать применения трансформаторов тока, не стойких к току КЗ, а приборы учета рекомендуется присоединять к трансформаторам тока на стороне низшего напряжения.

6. Провода ВЛ (см. также 1.4.2, п. 1 "б").

7. Аппараты и шины цепей трансформаторов напряжения при расположении их в отдельной камере или за добавочным резистором, встроенным в предохранитель или установленным отдельно.

1.4.4. При выборе расчетной схемы для определения токов КЗ следует исходить из предусматриваемых для данной электроустановки условий длительной ее работы и не считаться с кратковременными видоизменениями схемы этой электроустановки, которые не предусмотрены для длительной эксплуатации (например, при переключениях). Ремонтные и послеаварийные режимы работы электроустановки к кратковременным изменениям схемы не относятся.

Расчетная схема должна учитывать перспективу развития внешних сетей и генерирующих источников, с которыми электрически связывается рассматриваемая установка, не менее чем на 5 лет от запланированного срока ввода ее в эксплуатацию.

При этом допустимо вести расчет токов КЗ приближенно для начального момента КЗ.

1.4.5. В качестве расчетного вида КЗ следует принимать:

1. Для определения электродинамической стойкости аппаратов и жестких шин с относящимися к ним поддерживающими и опорными конструкциями - трехфазное КЗ.

2. Для определения термической стойкости аппаратов и проводников - трехфазное КЗ; на генераторном напряжении электростанций - трехфазное или двухфазное в зависимости от того, какое из них приводит к большему нагреву.

3. Для выбора аппаратов по коммутационной способности - по большему из значений, получаемых для случаев трехфазного и однофазного КЗ на землю (в сетях с большими токами замыкания на землю); если выключатель характеризуется двумя значениями коммутационной способности - трехфазной и однофазной - соответственно по обоим значениям.

1.4.6. Расчетный ток КЗ следует определять, исходя из условия повреждения в такой точке рассматриваемой цепи, при КЗ в которой аппараты и проводники этой цепи находятся в наиболее тяжелых условиях (исключения см. в 1.4.7 и 1.4.17, п. 3). Со случаями одновременного замыкания на землю различных фаз в двух разных точках схемы допустимо не считаться.

1.4.7. На реактированных линиях в закрытых распределительных устройствах проводники и аппараты, расположенные до реактора и отделенные от питающих сборных шин (на ответвлениях от линий - от элементов основной цепи) разделяющими полками, перекрытиями и т.п., набираются по току КЗ за реактором, если последний расположен в том же здании и соединение выполнено шинами.

Шинные ответвления от сборных шин до разделяющих полок и проходные изоляторы в последних должны быть выбраны исходя из КЗ до реактора.

1.4.8. При расчете термической стойкости в качестве расчетного времени следует принимать сумму времен, получаемую от сложения времени действия основной защиты (с учетом действия АПВ), установленной у ближайшего к месту КЗ выключателя, и полного времени отключения этого выключателя (включая время горения дуги).

При наличии зоны нечувствительности у основной защиты (по току, напряжению, сопротивлению и т.п.) термическую стойкость необходимо дополнительно проверять, исходя из времени действия защиты, реагирующей на повреждение в этой зоне, плюс полное время отключения выключателя. При этом в качестве расчетного тока КЗ следует принимать то значение его, которое соответствует этому месту повреждения.

Аппаратура и токопроводы, применяемые в цепях генераторов мощностью 60 МВт и более, а также в цепях блоков генератор-трансформатор такой же мощности, должны проверяться по термической стойкости, исходя из времени прохождения тока КЗ 4 с.


ОПРЕДЕЛЕНИЕ ТОКОВ КОРОТКОГО ЗАМЫКАНИЯ ДЛЯ ВЫБОРА

АППАРАТОВ И ПРОВОДНИКОВ

1.4.9. В электроустановках до 1 кВ и выше при определении токов КЗ для выбора аппаратов и проводников и определения воздействия на несущие конструкции следует исходить из следующего:

1. Все источники, участвующие в питании рассматриваемой точки КЗ, работают одновременно с номинальной нагрузкой.

2. Все синхронные машины имеют автоматические регуляторы напряжения и устройства форсировки возбуждения.

3. Короткое замыкание наступает в такой момент времени, при котором ток КЗ будет иметь наибольшее значение.

4. Электродвижущие силы всех источников питания совпадают по фазе.

5. Расчетное напряжение каждой ступени принимается на 5% выше номинального напряжения сети.

6. Должно учитываться влияние на токи КЗ присоединенных к данной сети синхронных компенсаторов, синхронных и асинхронных электродвигателей. Влияние асинхронных электродвигателей на токи КЗ не учитывается при мощности электродвигателей до 100 кВТ в единице, если электродвигатели отделены от места КЗ одной ступенью трансформации, а также при любой мощности, если они отделены от места КЗ двумя или более ступенями трансформации либо если ток от них может поступать к месту КЗ только через те элементы, через которые проходит основной ток КЗ от сети и которые имеют существенное сопротивление (линии, трансформаторы и т.п.).

1.4.10. В электроустановках выше 1 кВ в качестве расчетных сопротивлений следует принимать индуктивные сопротивления электрических машин, силовых трансформаторов и автотрансформаторов, реакторов, воздушных и кабельных линий, а также токопроводов. Активное сопротивление следует учитывать только для ВЛ с проводами малых сечений и стальными проводами, а также для протяженных кабельных сетей малых сечений с большим активным сопротивлением.

1.4.11. В электроустановках до 1 кВ в качестве расчетных сопротивлений следует принимать индуктивные и активные сопротивления всех элементов цепи, включая активные сопротивления переходных контактов цепи. Допустимо пренебречь сопротивлениями одного вида (активными или индуктивными), если при этом полное сопротивление цепи уменьшается не более чем на 10%.

1.4.12. В случае питания электрических сетей до 1 кВ от понижающих трансформаторов при расчете токов КЗ следует исходить из условия, что подведенное к трансформатору напряжение неизменно и равно его номинальному напряжению.

1.4.13. Элементы цепи, защищенной плавким предохранителем с токоограничивающим действием, следует проверять на электродинамическую стойкость по наибольшему мгновенному значению тока КЗ, пропускаемого предохранителем.


ВЫБОР ПРОВОДНИКОВ И ИЗОЛЯТОРОВ, ПРОВЕРКА НЕСУЩИХ

КОНСТРУКЦИЙ ПО УСЛОВИЯМ ДИНАМИЧЕСКОГО ДЕЙСТВИЯ

ТОКОВ КОРОТКОГО ЗАМЫКАНИЯ

1.4.14. Усилия, действующие на жесткие шины и передающиеся ими на изоляторы и поддерживающие жесткие конструкции, следует рассчитывать по наибольшему мгновенному значению тока трехфазного КЗ iy с учетом сдвига между токами в фазах и без учета механических колебаний шинной конструкции. В отдельных случаях (например, при предельных расчетных механических напряжениях) могут быть учтены механические колебания шин и шинных конструкций.

Импульсы силы, действующие на гибкие проводники и поддерживающие их изоляторы, выводы и конструкции, рассчитываются по среднеквадратическому (за время прохождения) току двухфазного замыкания между соседними фазами. При расщепленных проводниках и гибких токопроводах взаимодействие токов КЗ в проводниках одной и той же фазы определяется по действующему значению тока трехфазного КЗ.

Гибкие токопроводы должны проверяться на схлестывание.

1.4.15. Найденные расчетом в соответствии с 1.4.14 механические усилия, передающееся при КЗ жесткими шинами на опорные и проходные изоляторы, должны составить в случае применения одиночных изоляторов не более 60% соответствующих гарантийных значений наименьшего разрушающего усилия; при спаренных опорных изоляторах - не более 100% разрушающего усилия одного изолятора.

При применении шин составных профилей (многополосные, из двух швеллеров и т.д.) механические напряжения находятся как арифметическая сумма напряжений от взаимодействия фаз и взаимодействия элементов каждой шины между собой.

Наибольшие механические напряжения в материале жестких шин не должны превосходить 0,7 временного сопротивления разрыву по ГОСТ.


ВЫБОР ПРОВОДНИКОВ ПО УСЛОВИЯМ НАГРЕВА

ПРИ КОРОТКОМ ЗАМЫКАНИИ

1.4.16. Температура нагрева проводников при КЗ должна быть не выше следующих предельно допустимых значений, град. C:

    Шины:
медные ....................................................... 300
алюминиевые   ................................................ 200
стальные, не имеющие непосредственного
соединения с аппаратами ...................................... 400
стальные с непосредственным
присоединением к аппаратам ................................... 300

    Кабели с бумажной пропитанной изоляцией на напряжение, кВ:
до 10 ........................................................ 200
20 - 220 ..................................................... 125

    Кабели и изолированные провода с медными и алюминиевыми жилами
и изоляцией:
поливинилхлоридной и резиновой ............................... 150
полиэтиленовой ............................................... 120

    Медные неизолированные провода при тяжениях, Н/кв. мм:
менее 20 ..................................................... 250
20 и более ................................................... 200

    Алюминиевые неизолированные провода при тяжениях, Н/кв. мм:
менее 10 ..................................................... 200
10 и более ................................................... 160
Алюминиевая часть сталеалюминиевых проводов .................. 200

1.4.17. Проверка кабелей на нагрев токами КЗ в тех случаях, когда это требуется в соответствии с 1.4.2 и 1.4.3, должна производиться для:

1) одиночных кабелей одной строительной длины, исходя из КЗ в начале кабеля;

2) одиночных кабелей со ступенчатыми сечениями по длине, исходя из КЗ в начале каждого участка нового сечения;

3) пучка из двух и более параллельно включенных кабелей, исходя из КЗ непосредственно за пучком (по сквозному току КЗ).

1.4.18. При проверке на термическую стойкость аппаратов и проводников линий, оборудованных устройствами быстродействующего АПВ, должно учитываться повышение нагрева из-за увеличения суммарной продолжительности прохождения тока КЗ по таким линиям.

Расщепленные провода ВЛ при проверке на нагрев в условиях КЗ рассматриваются как один провод суммарного сечения.


ВЫБОР АППАРАТОВ ПО КОММУТАЦИОННОЙ СПОСОБНОСТИ

1.4.19. Выключатели выше 1 кВ следует выбирать:

1) по отключающей способности с учетом параметров восстанавливающегося напряжения;

2) по включающей способности. При этом выключатели генераторов, установленные на стороне генераторного напряжения, проверяются только на несинхронное включение в условиях противофазы.

1.4.20. Предохранители следует выбирать по отключающей способности. При этом в качестве расчетного тока следует принимать действующее значение периодической составляющей начального тока КЗ без учета токоограничивающей способности предохранителей.

1.4.21. Выключатели нагрузки и короткозамыкатели следует выбирать по предельно допустимому току, возникающему при включении на КЗ.

1.4.22. Отделители и разъединители не требуется проверять по коммутационной способности при КЗ. При использовании отделителей и разъединителей для отключения-включения ненагруженных линий, ненагруженных трансформаторов или уравнительных токов параллельных цепей отделители и разъединители следует проверять по режиму такого отключения-включения.


Утверждена

Главтехуправлением

и Госэнергонадзором

Минэнерго СССР

20 октября 1977 года

Глава 1.5. УЧЕТ ЭЛЕКТРОЭНЕРГИИ


ОБЛАСТЬ ПРИМЕНЕНИЯ, ОПРЕДЕЛЕНИЯ

1.5.1. Настоящая глава Правил содержит требования к учету электроэнергии в электроустановках. Дополнительные требования к учету электроэнергии в жилых и общественных зданиях приведены в гл. 7.1.

1.5.2. Расчетным учетом электроэнергии называется учет выработанной, а также отпущенной потребителям электроэнергии для денежного расчета за нее.

Счетчики, устанавливаемые для расчетного учета, называются расчетными счетчиками.

1.5.3. Техническим (контрольным) учетом электроэнергии называется учет для контроля расхода электроэнергии внутри электростанций, подстанций, предприятий, в зданиях, квартирах и т.п.

Счетчики, устанавливаемые для технического учета, называются счетчиками технического учета.


ОБЩИЕ ТРЕБОВАНИЯ

1.5.4. Учет активной электроэнергии должен обеспечивать определение количества энергии:

1) выработанной генераторами электростанций;

2) потребленной на собственные и хозяйственные (раздельно) нужды электростанций и подстанций;

3) отпущенной потребителям по линиям, отходящим от шин электростанции непосредственно к потребителям;

4) переданной в другие энергосистемы или полученной от них;

5) отпущенной потребителям из электрической сети.

Кроме того, учет активной электроэнергии должен обеспечивать возможность:

определения поступления электроэнергии в электрические сети разных классов напряжений энергосистемы;

составления балансов электроэнергии для хозрасчетных подразделений энергосистемы;

контроля за соблюдением потребителями заданных им режимов потребления и баланса электроэнергии.

1.5.5. Учет реактивной электроэнергии должен обеспечивать возможность определения количества реактивной электроэнергии, полученной потребителем от электроснабжающей организации или переданной ей, только в том случае, если по этим данным производятся расчеты или контроль соблюдения заданного режима работы компенсирующих устройств.


ПУНКТЫ УСТАНОВКИ СРЕДСТВ УЧЕТА ЭЛЕКТРОЭНЕРГИИ

1.5.6. Счетчики для расчета электроснабжающей организации с потребителями электроэнергии рекомендуется устанавливать на границе раздела сети (по балансовой принадлежности) электроснабжающей организации и потребителя.

1.5.7. Расчетные счетчики активной электроэнергии на электростанции должны устанавливаться:

1) для каждого генератора с таким расчетом, чтобы учитывалась вся выработанная генератором электроэнергия;

2) для всех присоединений шин генераторного напряжения, по которым возможна реверсивная работа, - по два счетчика со стопорами;

3) для межсистемных линий электропередачи - два счетчика со стопорами, учитывающих отпущенную и полученную электроэнергию;

4) для линий всех классов напряжений, отходящих от шин электростанций и принадлежащих потребителям (см. также 1.5.10).

Для линий до 10 кВ, отходящих от шин электростанций, во всех случаях должны быть выполнены цепи учета, сборки зажимов (см. 1.5.23), а также предусмотрены места для установки счетчиков;

5) для всех трансформаторов и линий, питающих шины основного напряжения (выше 1 кВ) собственных нужд (СН).

Счетчики устанавливаются на стороне высшего напряжения; если трансформаторы СН электростанции питаются от шин 35 кВ и выше или ответвлением от блоков на напряжении выше 10 кВ, допускается установка счетчиков на стороне низшего напряжения трансформаторов;

6) для линий хозяйственных нужд (например, питание механизмов и установок ремонтно-производственных баз) и посторонних потребителей, присоединенных к распределительному устройству СН электростанций;

7) для каждого обходного выключателя или для шиносоединительного (междусекционного) выключателя, используемого в качестве обходного для присоединений, имеющих расчетный учет, - два счетчика со стопорами.

На электростанциях, оборудуемых системами централизованного сбора и обработки информации, указанные системы следует использовать для централизованного расчетного и технического учета электроэнергии. На остальных электростанциях рекомендуется применение автоматизированной системы учета электроэнергии.

1.5.8. На электростанциях мощностью до 1 МВт расчетные счетчики активной электроэнергии должны устанавливаться только для генераторов и трансформаторов СН или только для трансформаторов СН и отходящих линий.

1.5.9. Расчетные счетчики активной электроэнергии на подстанции энергосистемы должны устанавливаться:

1) для каждой отходящей линии электропередачи, принадлежащей потребителям (см. также 1.5.10);

2) для межсистемных линий электропередачи - по два счетчика со стопорами, учитывающих отпущенную и полученную электроэнергию; при наличии ответвлений от этих линий в другие энергосистемы - по два счетчика со стопорами, учитывающих полученную и отпущенную электроэнергию, на вводах в подстанции этих энергосистем;

3) на трансформаторах СН;

4) для линий хозяйственных нужд или посторонних потребителей (поселок и т.п.), присоединенных к шинам СН.

5) для каждого обходного выключателя или для шиносоединительного (междусекционного) выключателя, используемого в качестве обходного для присоединений, имеющих расчетный учет, - два счетчика со стопорами.

Для линий до 10 кВ во всех случаях должны быть выполнены цепи учета, сборки зажимов (см. 1.5.23), а также предусмотрены места для установки счетчиков.

1.5.10. Расчетные счетчики, предусматриваемые в соответствии с 1.5.7, п. 4 и 1.5.9, п. 1, допускается устанавливать не на питающем, а на приемном конце линии у потребителя в случаях, когда трансформаторы тока на электростанциях и подстанциях, выбранные по току КЗ или по характеристикам дифференциальной защиты шин, не обеспечивают требуемой точности учета электроэнергии.

1.5.11. Расчетные счетчики активной электроэнергии на подстанции, принадлежащей потребителю, должны устанавливаться:

1) на вводе (приемном конце) линии электропередачи в подстанцию потребителя в соответствии с 1.5.10 при отсутствии электрической связи с другой подстанцией энергосистемы или другого потребителя на питающем напряжении;

2) на стороне высшего напряжения трансформаторов подстанции потребителя при наличии электрической связи с другой подстанцией энергосистемы или наличии другого потребителя на питающем напряжении.

Допускается установка счетчиков на стороне низшего напряжения трансформаторов в случаях, когда трансформаторы тока, выбранные по току КЗ или по характеристикам дифференциальной защиты шин, не обеспечивают требуемой точности учета электроэнергии, а также когда у имеющихся встроенных трансформаторов тока отсутствует обмотка класса точности 0,5.

В случае, когда установка дополнительных комплектов трансформаторов тока со стороны низшего напряжения силовых трансформаторов для включения расчетных счетчиков невозможна (КРУ, КРУН), допускается организация учета на отходящих линиях 6 - 10 кВ.

Для предприятия, рассчитывающегося с электроснабжающей организацией по максимуму заявленной мощности, следует предусматривать установку счетчика с указателем максимума нагрузки при наличии одного пункта учета, при наличии двух или более пунктов учета - применение автоматизированной системы учета электроэнергии;

3) на стороне среднего и низшего напряжений силовых трансформаторов, если на стороне высшего напряжения применение измерительных трансформаторов не требуется для других целей;

4) на трансформаторах СН, если электроэнергия, отпущенная на собственные нужды, не учитывается другими счетчиками; при этом счетчики рекомендуется устанавливать со стороны низшего напряжения;

5) на границе раздела основного потребителя и постороннего потребителя (субабонента), если от линии или трансформаторов потребителей питается еще посторонний потребитель, находящийся на самостоятельном балансе.

Для потребителей каждой тарификационной группы следует устанавливать отдельные расчетные счетчики.

1.5.12. Счетчики реактивной электроэнергии должны устанавливаться:

1) на тех же элементах схемы, на которых установлены счетчики активной электроэнергии для потребителей, рассчитывающихся за электроэнергию с учетом разрешенной к использованию реактивной мощности;

2) на присоединениях источников реактивной мощности потребителей, если по ним производится расчет за электроэнергию, выданную в сеть энергосистемы, или осуществляется контроль заданного режима работы.

Если со стороны предприятия с согласия энергосистемы производится выдача реактивной электроэнергии в сеть энергосистемы, необходимо устанавливать два счетчика реактивной электроэнергии со стопорами в тех элементах схемы, где установлен расчетный счетчик активной электроэнергии. Во всех других случаях должен устанавливаться один счетчик реактивной электроэнергии со стопором.

Для предприятия, рассчитывающегося с энергоснабжающей организацией по максимуму разрешенной реактивной мощности, следует предусматривать установку счетчика с указателем максимума нагрузки, при наличии двух или более пунктов учета - применение автоматизированной системы учета электроэнергии.


ТРЕБОВАНИЯ К РАСЧЕТНЫМ СЧЕТЧИКАМ

1.5.13. Каждый установленный расчетный счетчик должен иметь на винтах, крепящих кожух счетчика, пломбы с клеймом госповерителя, а на зажимной крышке - пломбу энергоснабжающей организации.

На вновь устанавливаемых трехфазных счетчиках должны быть пломбы государственной поверки с давностью не более 12 мес., а на однофазных счетчиках - с давностью не более 2 лет.

1.5.14. Учет активной и реактивной электроэнергии трехфазного тока должен производиться с помощью трехфазных счетчиков.

1.5.15. Допустимые классы точности расчетных счетчиков активной электроэнергии для различных объектов учета приведены ниже:

    Генераторы мощностью  более   50   МВт,   межсистемные   линии
электропередачи 220 кВ и выше,  трансформаторы мощностью 63 МВ x А
и более ............................................ 0,5 (0,7) <*>

    Генераторы мощностью  12  -   50   МВт,   межсистемные   линии
электропередачи  110  -  150 кВ,  трансформаторы мощностью 10 - 40
МВ x А ....................................................... 1,0

    Прочие объекты учета ..................................... 2,0

--------------------------------

<*> Значение, указанное в скобках, относится к импортируемым счетчикам.

Класс точности счетчиков реактивной электроэнергии должен выбираться на одну ступень ниже соответствующего класса точности счетчиков активной электроэнергии.


УЧЕТ С ПРИМЕНЕНИЕМ ИЗМЕРИТЕЛЬНЫХ ТРАНСФОРМАТОРОВ

1.5.16. Класс точности трансформаторов тока и напряжения для присоединения расчетных счетчиков электроэнергии должен быть не более 0,5. Допускается использование трансформаторов напряжения класса точности 1,0 для включения расчетных счетчиков класса точности 2,0.

Для присоединения счетчиков технического учета допускается использование трансформаторов тока класса точности 1,0, а также встроенных трансформаторов тока класса точности ниже 1,0, если для получения класса точности 1,0 требуется установка дополнительных комплектов трансформаторов тока.

Трансформаторы напряжения, используемые для присоединения счетчиков технического учета, могут иметь класс точности ниже 1,0.

1.5.17. Допускается применение трансформаторов тока с завышенным коэффициентом трансформации (по условиям электродинамической и термической стойкости или защиты шин), если при максимальной нагрузке присоединения ток во вторичной обмотке трансформатора тока будет составлять не менее 40% номинального тока счетчика, а при минимальной рабочей нагрузке - не менее 5%.

1.5.18. Присоединение токовых обмоток счетчиков к вторичным обмоткам трансформаторов тока следует проводить, как правило, отдельно от цепей защиты и совместно с электроизмерительными приборами.

Допускается производить совместное присоединение токовых цепей, если раздельное их присоединение требует установки дополнительных трансформаторов тока, а совместное присоединение не приводит к снижению класса точности и надежности цепей трансформаторов тока, служащих для учета, и обеспечивает необходимые характеристики устройств релейной защиты.

Использование промежуточных трансформаторов тока для включения расчетных счетчиков запрещается (исключение см. в 1.5.21).

1.5.19. Нагрузка вторичных обмоток измерительных трансформаторов, к которым присоединяются счетчики, не должна превышать номинальных значений.

Сечение и длина проводов и кабелей в цепях напряжения расчетных счетчиков должны выбираться такими, чтобы потери напряжения в этих цепях составляли не более 0,25% номинального напряжения при питании от трансформаторов напряжения класса точности 0,5 и не более 0,5% при питании от трансформаторов напряжения класса точности 1,0. Для обеспечения этого требования допускается применение отдельных кабелей от трансформаторов напряжения до счетчиков.

Потери напряжения от трансформаторов напряжения до счетчиков технического учета должны составлять не более 1,5% номинального напряжения.

1.5.20. Для присоединения расчетных счетчиков на линиях электропередачи 110 кВ и выше допускается установка дополнительных трансформаторов тока (при отсутствии вторичных обмоток для присоединения счетчиков, для обеспечения работы счетчика в требуемом классе точности, по условиям нагрузки на вторичные обмотки и т.п.). См. также 1.5.18.

1.5.21. Для обходных выключателей 110 и 220 кВ со встроенными трансформаторами тока допускается снижение класса точности этих трансформаторов тока на одну ступень по отношению к указанному в 1.5.16.

Для обходного выключателя 110 кВ и шиносоединительного (междусекционного) выключателя 110 кВ, используемого в качестве обходного, с отдельно стоящими трансформаторами тока (имеющими не более трех вторичных обмоток) допускается включение токовых цепей счетчика совместно с цепями защиты при использовании промежуточных трансформаторов тока класса точности не более 0,5; при этом допускается снижение класса точности трансформаторов тока на одну ступень.

Такое же включение счетчиков и снижение класса точности трансформаторов тока допускается для шиносоединительного (междусекционного) выключателя на напряжение 220 кВ, используемого в качестве обходного, с отдельно стоящими трансформаторами тока и на напряжение 110 - 220 кВ со встроенными трансформаторами тока.

1.5.22. Для питания цепей счетчиков могут применяться как однофазные, так и трехфазные трансформаторы напряжения, в том числе четерых- и пятистержневые, применяемые для контроля изоляции.

1.5.23. Цепи учета следует выводить на самостоятельные сборки зажимов или секции в общем ряду зажимов. При отсутствии сборок с зажимами необходимо устанавливать испытательные блоки.

Зажимы должны обеспечивать закорачивание вторичных цепей трансформаторов тока, отключение токовых цепей счетчика и цепей напряжения в каждой фазе счетчиков при их замене или проверке, а также включение образцового счетчика без отсоединения проводов и кабелей.

Конструкция сборок и коробок зажимов расчетных счетчиков должна обеспечивать возможность их пломбирования.

1.5.24. Трансформаторы напряжения, используемые только для учета и защищенные на стороне высшего напряжения предохранителями, должны иметь контроль целости предохранителей.

1.5.25. При нескольких системах шин и присоединении каждого трансформатора напряжения только к своей системе шин должно быть предусмотрено устройство для переключения цепей счетчиков каждого присоединения на трансформаторы напряжения соответствующих систем шин.

1.5.26. На подстанциях потребителей конструкция решеток и дверей камер, в которых установлены предохранители на стороне высшего напряжения трансформаторов напряжения, используемых для расчетного учета, должна обеспечивать возможность их пломбирования.

Рукоятки приводов разъединителей трансформаторов напряжения, используемых для расчетного учета, должны иметь приспособления для их пломбирования.


УСТАНОВКА СЧЕТЧИКОВ И ЭЛЕКТРОПРОВОДКА К НИМ

1.5.27. Счетчики должны размещаться в легко доступных для обслуживания сухих помещениях, в достаточно свободном и не стесненном для работы месте с температурой в зимнее время не ниже 0 град. C.

Счетчики общепромышленного исполнения не разрешается устанавливать в помещениях, где по производственным условиям температура может часто превышать +40 град. C, а также в помещениях с агрессивными средами.

Допускается размещение счетчиков в неотапливаемых помещениях и коридорах распределительных устройств электростанций и подстанций, а также в шкафах наружной установки. При этом должно быть предусмотрено стационарное их утепление на зимнее время посредством утепляющих шкафов, колпаков с подогревом воздуха внутри них электрической лампой или нагревательным элементом для обеспечения внутри колпака положительной температуры, но не выше +20 град. C.

1.5.28. Счетчики, предназначенные для учета электроэнергии, вырабатываемой генераторами электростанций, следует устанавливать в помещениях со средней температурой окружающего воздуха +15 - +25 град. C. При отсутствии таких помещений счетчики рекомендуется помещать в специальных шкафах, где должна поддерживаться указанная температура в течение всего года.

1.5.29. Счетчики должны устанавливаться в шкафах, камерах комплектных распределительных устройствах (КРУ, КРУН), на панелях, щитах, в нишах, на стенах, имеющих жесткую конструкцию.

Допускается крепление счетчиков на деревянных, пластмассовых или металлических щитках.

Высота от пола до коробки зажимов счетчиков должна быть в пределах 0,8 - 1,7 м. Допускается высота менее 0,8 м, но не менее 0,4 м.

1.5.30. В местах, где имеется опасность механических повреждений счетчиков или их загрязнения, или в местах, доступных для посторонних лиц (проходы, лестничные клетки и т.п.), для счетчиков должен предусматриваться запирающийся шкаф с окошком на уровне циферблата. Аналогичные шкафы должны устанавливаться также для совместного размещения счетчиков и трансформаторов тока при выполнении учета на стороне низшего напряжения (на вводе у потребителей).

1.5.31. Конструкции и размеры шкафов, ниш, щитков и т.п. должны обеспечивать удобный доступ к зажимам счетчиков и трансформаторов тока. Кроме того, должна быть обеспечена возможность удобной замены счетчика и установки его с уклоном не более 1 град. Конструкция его крепления должна обеспечивать возможность установки и съема счетчика с лицевой стороны.

1.5.32. Электропроводки к счетчикам должны отвечать требованиям, приведенным в гл. 2.1 и 3.4.

1.5.33. В электропроводке к расчетным счетчикам наличие паек не допускается.

1.5.34. Сечения проводов и кабелей, присоединяемых к счетчикам, должны приниматься в соответствии с 3.4.4 (см. также 1.5.19).

1.5.35. При монтаже электропроводки для присоединения счетчиков непосредственного включения около счетчиков необходимо оставлять концы проводов длиной не менее 120 мм. Изоляция или оболочка нулевого провода на длине 100 мм перед счетчиком должна иметь отличительную окраску.

1.5.36. Для безопасной установки и замены счетчиков в сетях напряжением до 380 В должна предусматриваться возможность отключения счетчика установленными до него на расстоянии не более 10 м коммутационным аппаратом или предохранителями. Снятие напряжения должно предусматриваться со всех фаз, присоединяемых к счетчику.

Трансформаторы тока, используемые для присоединения счетчиков на напряжении до 380 В, должны устанавливаться после коммутационных аппаратов по направлению потока мощности.

1.5.37. Заземление (зануление) счетчиков и трансформаторов тока должно выполняться в соответствии с требованиями гл. 1.7. При этом заземляющие и нулевые защитные проводники от счетчиков и трансформаторов тока напряжением до 1 кВ до ближайшей сборки зажимов должны быть медными.

1.5.38. При наличии на объекте нескольких присоединений с отдельным учетом электроэнергии на панелях счетчиков должны быть надписи наименований присоединений.


ТЕХНИЧЕСКИЙ УЧЕТ

1.5.39. На тепловых и атомных электростанциях с агрегатами (блоками), не оборудованными информационными или управляющими вычислительными машинами, следует устанавливать стационарные или применять инвентарные переносные счетчики технического учета в системе СН для возможности расчетов технико-экономических показателей. При этом установка счетчиков активной электроэнергии должна производиться в цепях электродвигателей, питающихся от шин распределительного устройства основного напряжения (выше 1 кВ) собственных нужд, и в цепях всех трансформаторов, питающихся от этих шин.

1.5.40. На электростанциях с поперечными связями (имеющих общий паропровод) должна предусматриваться на стороне генераторного напряжения превышающих трансформаторов техническая возможность установки (в условиях эксплуатации) счетчиков технического учета активной электроэнергии, используемых для контроля правильности работы расчетных генераторных счетчиков.

1.5.41. Счетчики активной электроэнергии для технического учета следует устанавливать на подстанциях напряжением 35 кВ и выше энергосистем: на сторонах среднего и низшего напряжений силовых трансформаторов; на каждой отходящей линии электропередачи 6 кВ и выше, находящейся на балансе энергосистемы.

Счетчики реактивной электроэнергии для технического учета следует устанавливать на сторонах среднего и низшего напряжений силовых трансформаторов подстанций 35 кВ и выше энергосистем.

Указанные требования к установке счетчиков электроэнергии подлежат реализации по мере обеспечения счетчиками.

1.5.42. На предприятиях следует предусматривать техническую возможность установки (в условиях эксплуатации) стационарных или применения инвентарных переносных счетчиков для контроля за соблюдением лимитов расхода электроэнергии цехами, технологическими линиями, отдельными энергоемкими агрегатами, для определения расхода электроэнергии на единицу продукции или полуфабриката.

Допускается установка счетчиков технического учета на вводе предприятия, если расчетный учет с этим предприятием ведется по счетчикам, установленным на подстанциях или электростанциях энергосистем.

На установку и снятие счетчиков технического учета на предприятиях разрешения энергоснабжающей организации не требуется.

1.5.43. Приборы технического учета на предприятиях (счетчики и измерительные трансформаторы) должны находиться в ведении самих потребителей и должны удовлетворять требованиям 1.5.13 (за исключением требования о наличии пломбы энергоснабжающей организации), 1.5.14 и 1.5.15.

1.5.44. Классы точности счетчиков технического учета активной электроэнергии должны соответствовать значениям, приведенным ниже:

    Для линий электропередачи с двусторонним питанием  напряжением
220 кВ и выше, трансформаторов мощностью 63 МВ x А и более ... 1,0
    Для прочих объектов учета ................................ 2,0

Классы точности счетчиков технического учета реактивной электроэнергии допускается выбирать на одну ступень ниже соответствующего класса точности счетчиков технического учета активной электроэнергии.


Утверждена

Главтехуправлением

и Госэнергонадзором

Минэнерго СССР

13 мая 1976 года

Глава 1.6. ИЗМЕРЕНИЯ ЭЛЕКТРИЧЕСКИХ ВЕЛИЧИН


ОБЛАСТЬ ПРИМЕНЕНИЯ

1.6.1. Настоящая глава Правил распространяется на измерения электрических величин, осуществляемых при помощи стационарных средств (показывающих, регистрирующих, фиксирующих и др.).

Правила не распространяются на лабораторные измерения и на измерения, осуществляемые с помощью переносных приборов.

Измерения неэлектрических величин, а также измерения других электрических величин, не регламентированных Правилами, требуемые в связи с особенностями технологического процесса или основного оборудования, выполняются на основании соответствующих нормативных документов.


ОБЩИЕ ТРЕБОВАНИЯ

1.6.2. Средства измерений электрических величин должны удовлетворять следующим основным требованиям:

1) класс точности измерительных приборов должен быть не хуже 2,5;

2) классы точности измерительных шунтов, добавочных резисторов, трансформаторов и преобразователей должны быть не хуже приведенных в табл. 1.6.1;

3) пределы измерения приборов должны выбираться с учетом возможных наибольших длительных отклонений измеряемых величин от номинальных значений.


Таблица 1.6.1

КЛАССЫ ТОЧНОСТИ СРЕДСТВ ИЗМЕРЕНИЙ

Класс точности прибора

Класс точности шунта, добавочного резистора

Класс точности измерительного преобразователя

Класс точности измерительного трансформатора

1,0

0,5

0,5

0,5

1,5

0,5

0,5 <*>

0,5 <*>

2,5

0,5

1,0

1,0 <**>

--------------------------------

<*> Допускается 1,0.

<**> Допускается 3,0.

1.6.3. Установка измерительных приборов должна, как правило, производиться в пунктах, откуда осуществляется управление.

На подстанциях и гидроэлектростанциях без постоянного дежурства оперативного персонала допускается не устанавливать стационарные показывающие приборы, при этом должны быть предусмотрены места для присоединения переносных приборов специально обученным персоналом.

1.6.4. Измерения на линиях электропередачи 330 кВ и выше, а также на генераторах и трансформаторах должны производиться непрерывно.

На генераторах и трансформаторах гидроэлектростанций допускается производить измерения периодически с помощью средств централизованного контроля.

Допускается производить измерения "по вызову" на общий для нескольких присоединений (за исключением указанных в первом абзаце) комплект показывающих приборов, а также применять другие средства централизованного контроля.

1.6.5. При установке регистрирующих приборов в оперативном контуре пункта управления допускается не устанавливать показывающие приборы для непрерывного измерения тех же величин.


ИЗМЕРЕНИЕ ТОКА

1.6.6. Измерение тока должно производиться в цепях всех напряжений, где оно необходимо для систематического контроля технологического процесса или оборудования.

1.6.7. Измерение постоянного тока должно производиться в цепях:

1) генераторов постоянного тока и силовых преобразователей;

2) аккумуляторных батарей, зарядных, подзарядных и разрядных устройств;

3) возбуждение синхронных генераторов, компенсаторов, а также электродвигателей с регулируемым возбуждением.

Амперметры постоянного тока должны иметь двусторонние шкалы, если возможно изменение направления тока.

1.6.8. В цепях переменного трехфазного тока следует, как правило, измерять ток одной фазы.

Измерение тока каждой фазы должно производиться:

1) для синхронных турбогенераторов мощностью 12 МВт и более;

2) для линий электропередачи с пофазным управлением, линий с продольной компенсацией и линий, для которых предусматривается возможность длительной работы в неполнофазном режиме; в обоснованных случаях может быть предусмотрено измерение тока каждой фазы линий электропередачи 330 кВ и выше с трехфазным управлением;

3) для дуговых электропечей.


ИЗМЕРЕНИЕ НАПРЯЖЕНИЯ

1.6.9. Измерение напряжения, как правило, должно производиться:

1) на секциях сборных шин постоянного и переменного тока, которые могут работать раздельно.

Допускается установка одного прибора с переключением на несколько точек измерения.

На подстанциях допускается измерять напряжение только на стороне низшего напряжения, если установка трансформаторов напряжения на стороне высшего напряжения не требуется для других целей;

2) в цепях генераторов постоянного и переменного тока, синхронных компенсаторов, а также в отдельных случаях в цепях агрегатов специального назначения.

При автоматизированном пуске генераторов или других агрегатов установка на них приборов для непрерывного измерения напряжения не обязательна;

3) в цепях возбуждения синхронных машин мощностью 1 МВт и более. В цепях возбуждения гидрогенераторов измерение не обязательно;

4) в цепях силовых преобразователей, аккумуляторных батарей, зарядных и подзарядных устройств;

5) в цепях дугогасящих реакторов.

1.6.10. В трехфазных сетях производится измерение, как правило, одного междуфазного напряжения. В сетях напряжением выше 1 кВ с эффективно заземленной нейтралью допускается измерение трех междуфазных напряжений для контроля исправности цепей напряжением одним прибором (с переключением).

1.6.11. Должна производиться регистрация значений одного междуфазного напряжения сборных шин 110 кВ и выше (либо отклонения напряжения от заданного значения) электростанций и подстанций, по напряжению на которых ведется режим энергосистемы.


КОНТРОЛЬ ИЗОЛЯЦИИ

1.6.12. В сетях переменного тока выше 1 кВ с изолированной или заземленной через дугогасящий реактор нейтралью, в сетях переменного тока до 1 кВ с изолированной нейтралью и в сетях постоянного тока с изолированными полюсами или с изолированной средней точкой, как правило, должен выполняться автоматический контроль изоляции, действующий на сигнал при снижении сопротивления изоляции одной из фаз (или полюса) ниже заданного значения, с последующим контролем асимметрии напряжения при помощи показывающего прибора (с переключением).

Допускается осуществлять контроль изоляции путем периодических измерений напряжений с целью визуального контроля асимметрии напряжения.


ИЗМЕРЕНИЕ МОЩНОСТИ

1.6.13. Измерение мощности должно производиться в цепях:

1) генераторов - активной и реактивной мощности.

При установке на генераторах мощностью 100 МВт и более щитовых показывающих приборов их класс точности должен быть не хуже 1,0.

На электростанциях мощностью 200 МВт и более должна также измеряться суммарная активная мощность.

Рекомендуется измерять суммарную активную мощность электростанций мощностью менее 200 МВт при необходимости автоматической передачи этого параметра на вышестоящий уровень оперативного управления;

2) конденсаторных батарей мощностью 25 МВар и более и синхронных компенсаторов - реактивной мощности;

3) трансформаторов и линий, питающих СН напряжением 6 кВ и выше тепловых электростанций, - активной мощности;

4) повышающих двухобмоточных трансформаторов электростанций - активной и реактивной мощности. В цепях повышающих трехобмоточных трансформаторов (или автотрансформаторов с использованием обмотки низшего напряжения) измерение активной и реактивной мощности должно производиться со стороны среднего и низшего напряжений.

Для трансформатора, работающего в блоке с генератором, измерение мощности со стороны низшего напряжения следует производить в цепи генератора;

5) понижающих трансформаторов 220 кВ и выше - активной и реактивной, напряжением 110 - 150 кВ - активной мощности.

В цепях понижающих двухобмоточных трансформаторов измерение мощности должно производиться со стороны низшего напряжения, а в цепях понижающих трехобмоточных трансформаторов - со стороны среднего и низшего напряжений.

На подстанциях 110 - 220 кВ без выключателей на стороне высшего напряжения измерение мощности допускается не выполнять. При этом должны предусматриваться места для присоединения контрольных показывающих или регистрирующих приборов;

6) линий напряжением 110 кВ и выше с двусторонним питанием, а также обходных выключателей - активной и реактивной мощности;

7) на других элементах подстанций, где для периодического контроля режимов сети необходимы измерения перетоков активной и реактивной мощности, должна предусматриваться возможность присоединения контрольных переносных приборов.

1.6.14. При установке щитовых показывающих приборов в цепях, в которых направление мощности может изменяться, эти приборы должны иметь двустороннюю шкалу.

1.6.15. Должна производиться регистрация:

1) активной мощности турбогенераторов (мощностью 60 МВт и более;

2) суммарной мощности электростанций (мощностью 200 МВт и более).


ИЗМЕРЕНИЕ ЧАСТОТЫ

1.6.16. Измерение частоты должно производиться:

1) на каждой секции шин генераторного напряжения;

2) на каждом генераторе блочной тепловой или атомной электростанций;

3) на каждой системе (секции) шин высшего напряжения электростанции;

4) в узлах возможного деления энергосистемы на несинхронно работающие части.

1.6.17. Регистрация частоты или ее отклонения от заданного значения должна производиться:

1) на электростанциях мощностью 200 МВт и более;

2) на электростанциях мощностью 6 МВт и более, работающих изолированно.

1.6.18. Абсолютная погрешность регистрирующих частотомеров на электростанциях, участвующих в регулировании мощности, должна быть не более +/- 0,1 Гц.


ИЗМЕРЕНИЯ ПРИ СИНХРОНИЗАЦИИ

1.6.19. Для измерений при точной (ручной или полуавтоматической) синхронизации должны предусматриваться следующие приборы: два вольтметра (или двойной вольтметр); два частотомера (или двойной частотомер); синхроноскоп.


РЕГИСТРАЦИЯ ЭЛЕКТРИЧЕСКИХ ВЕЛИЧИН В АВАРИЙНЫХ РЕЖИМАХ

1.6.20. Для автоматической регистрации аварийных процессов в электрической части энергосистемы должны предусматриваться автоматические осциллографы.

Расстановку автоматических осциллографов на объектах, а также выбор регистрируемых ими электрических параметров, как правило, следует производить в соответствии с рекомендациями, приведенными в табл. 1.6.2 и 1.6.3.

По согласованию с энергосистемами (районными энергетическими управлениями) могут предусматриваться регистрирующие приборы с ускоренной записью при аварии (для регистрации электрических параметров, не контролируемых с помощью автоматических осциллографов).


Таблица 1.6.2

РЕКОМЕНДАЦИИ ПО РАССТАНОВКЕ АВТОМАТИЧЕСКИХ

АВАРИЙНЫХ ОСЦИЛЛОГРАФОВ НА ОБЪЕКТАХ ЭНЕРГОСИСТЕМ

Напряжение распределительного устройства, кВ

Схема распределительного устройства

Количество линий, подключенных к секции (системе шин) распределительного устройства

Количество устанавливаемых осциллографов

750

Любая

Любое

Один для каждой линии (предпочтительно с записью предаварийного режима)

500

- " -

Одна или две

Один для каждой линии (без записи предаварийного режима)

500

- " -

Три или более

Один для каждой линии (предпочтительно хотя бы на одной из линий с записью предварительного режима)

330

- " -

Одна

Не устанавливается

330

- " -

Две или более

Один для каждой линии (без записи предаварийного режима)

220

С секциями или системами шин

Одна или две на каждую секцию или рабочую систему шин

Один для двух секций или рабочих систем шин (без записи предаварийного режима)

220

То же

Три или четыре на каждую секцию или рабочую систему шин

Один для каждой секции или рабочей системы шин (без записи предаварийного режима)

220

- " -

Пять или более на каждую секцию или рабочую систему шин

Один - два для каждой секции или рабочей системы шин с одним пусковым устройством (без записи предаварийного режима)

220

Полуторная илимногоугольник

Три или более

Один для трех - четырех линий или для каждой системы шин (без записи предаварийного режима)

220

Без выключателей 220 кВ или с одним выключателем

Одна или две

Не устанавливается

220

Треугольник, четырехугольник, мостик

То же

Допускается установка одного автоматического осциллографа, если на противоположных концах линий 220 кВ нет автоматических осциллографов

110

С секциями или системами шин

Одна - три на каждую секцию или систему шин

Один для двух секций или рабочих систем шин (без записи предаварийного режима)

110

С секциями или системами шин

Четыре - шесть на каждую секцию или рабочую систему шин

Один для каждой секции или рабочей системы шин (без записи предаварийного режима)

110

С секциями или системами шин

Семь или более на каждую секцию или рабочую систему шин

Один для каждой секции или рабочей системы шин. Допускается установка двух автоматических осциллографов для каждой секции или рабочей системы шин (без записи предаварийного режима)

110

Без выключателей на стороне 110 кВ, мостик, треугольник, четырехугольник

Одна или две

Не устанавливается


Таблица 1.6.3

РЕКОМЕНДАЦИИ ПО ВЫБОРУ ЭЛЕКТРИЧЕСКИХ ПАРАМЕТРОВ,

РЕГИСТРИРУЕМЫХ АВТОМАТИЧЕСКИМИ АВАРИЙНЫМИ ОСЦИЛЛОГРАФАМИ

Напряжение распределительного устройства, кВ

Параметры, рекомендуемые для регистрации автоматическими осциллографами

750, 500, 330

Фазные напряжения трех фаз линий. Напряжение и ток нулевой последовательности линий. Токи двух или трех фаз линий. Ток усилителя мощности, ток приема высокочастотного приемопередатчика и положение контактов выходного промежуточного реле высокочастотной защиты

220, 110

Фазные напряжения и напряжение нулевой последовательности секции или рабочей системы шин. Токи нулевой последовательности линий, присоединенных к секции или рабочей системе шин. Фазные токи (двух или трех фаз) наиболее ответственных линий. Токи приема высокочастотных приемопередатчиков дифференциально-фазных защит межсистемных линий электропередачи

1.6.21. На электрических станциях, принадлежащих потребителю и имеющих связь с энергосистемой (блок-станциях), автоматические аварийные осциллографы должны предусматриваться для каждой системы шин 110 кВ и выше, через которые осуществляется связь с энергосистемой по линиям электропередачи. Эти осциллографы, как правило, должны регистрировать напряжения (фазные и нулевой последовательности) соответствующей системы шин, токи (фазные и нулевой последовательности) линий электропередачи, связывающих блок-станцию с системой.

1.6.22. Для регистрации действия устройств противоаварийной системной автоматики рекомендуется устанавливать дополнительные осциллографы. Расстановка дополнительных осциллографов и выбор регистрируемых ими параметров должны предусматриваться в проектах противоаварийной системной автоматики.

1.6.23. Для определения мест повреждений на ВЛ 110 кВ и выше длиной более 20 км должны предусматриваться фиксирующие приборы.


Утверждена

Главтехуправлением

и Госэнергонадзором

Минэнерго СССР

30 апреля 1980 года

Согласована

с Госстроем СССР

1 февраля 1980 года

Глава 1.7. ЗАЗЕМЛЕНИЕ И ЗАЩИТНЫЕ МЕРЫ ЭЛЕКТРОБЕЗОПАСНОСТИ

Утратила силу с 1 января 2003 года. - Правила, утв. Приказом Минэнерго РФ от 08.07.2002 N 204.


Утверждена

Главтехуправлением

и Госэнергонадзором

Минэнерго СССР

21 января 1975 года

Согласована

с Госстроем СССР

28 мая 1974 года

Глава 1.8. НОРМЫ ПРИЕМО-СДАТОЧНЫХ ИСПЫТАНИЙ

Утратила силу с 1 сентября 2003 года. - Правила, утв. Приказом Минэнерго РФ от 09.04.2003 N 150.


Раздел 2. КАНАЛИЗАЦИЯ ЭЛЕКТРОЭНЕРГИИ

Утверждена

Главтехуправлением

и Госэнергонадзором

Минэнерго СССР

20 октября 1977 года

Согласована

с Госстроем СССР

28 июля 1975 года


Глава 2.1. ЭЛЕКТРОПРОВОДКИ


ОБЛАСТЬ ПРИМЕНЕНИЯ, ОПРЕДЕЛЕНИЯ

2.1.1. Настоящая глава Правил распространяется на электропроводки силовых, осветительных и вторичных цепей напряжением до 1 кВ переменного и постоянного тока, выполняемые внутри зданий и сооружений, на наружных их стенах, территориях предприятий, учреждений, микрорайонов, дворов, приусадебных участков, на строительных площадках с применением изолированных установочных проводов всех сечений, а также небронированных силовых кабелей с резиновой или пластмассовой изоляцией в металлической, резиновой или пластмассовой оболочке с сечением фазных жил до 16 кв. мм (при сечении более 16 кв. мм - см. гл. 2.3).

Линии, выполняемые неизолированными проводами внутри помещений, должны отвечать требованиям, приведенным в гл. 2.2, вне зданий - в гл. 2.4.

Ответвления от ВЛ к вводам (см. 2.1.6. и 2.4.2), выполняемые с применением изолированных или неизолированных проводов, должны сооружаться с соблюдением требований гл. 2.4, а ответвления, выполняемые с применением проводов (кабелей) на несущем тросе, - в соответствии с требованиями настоящей главы.

Кабельные линии, проложенные непосредственно в земле, должны отвечать требованиям, приведенным в гл. 2.3.

Дополнительные требования к электропроводкам приведены в гл. 1.5, 3.4, 5.4, 5.5 и в разд. 7.

2.1.2. Электропроводкой называется совокупность проводов и кабелей с относящимися к ним креплениями, поддерживающими защитными конструкциями и деталями, установленными в соответствии с настоящими Правилами.

2.1.3. Кабель, шнур, провод защищенный незащищенный, кабель и провод специальный - определения по ГОСТ.

2.1.4. Электропроводки разделяются на следующие виды:

1. Открытая электропроводка - проложенная по поверхности стен, потолков, по фермам и другим строительным элементам зданий и сооружений, по опорам и т.п.

При открытой электропроводке применяются следующие способы прокладки проводов и кабелей: непосредственно по поверхности стен, потолков и т.п., на струнах, тросах, роликах, изоляторах, в трубах, коробах, гибких металлических рукавах, на лотках, в электротехнических плинтусах и наличниках, свободной подвеской и т.п.

Открытая электропроводка может быть стационарной, передвижной и переносной.

2. Скрытая электропроводка - проложенная внутри конструктивных элементов зданий и сооружений (в стенах, полах, фундаментах, перекрытиях), а также по перекрытиям в подготовке пола, непосредственно под съемным полом и т.п.

При скрытой электропроводке применяются следующие способы прокладки проводов и кабелей: в трубах, гибких металлических рукавах, коробах, замкнутых каналах и пустотах строительных конструкций, в заштукатуриваемых бороздах, под штукатуркой, а также замоноличиванием в строительные конструкции при их изготовлении.

2.1.5. Наружной электропроводкой называется электропроводка, проложенная по наружным стенам зданий и сооружений, под навесами и т.п., а также между зданиями на опорах (не более четырех пролетов длиной до 25 м каждый) вне улиц, дорог и т.п.

Наружная электропроводка может быть открытой и скрытой.

2.1.6. Вводом от воздушной линии электропередачи называется электропроводка, соединяющая ответвление от ВЛ с внутренней электропроводкой, считая от изоляторов, установленных на наружной поверхности (стене, крыше) здания или сооружения, до зажимов вводного устройства.

2.1.7. Струной как несущим элементом электропроводки называется стальная проволока, натянутая вплотную к поверхности стены, потолка и т.п., предназначенная для крепления к ней проводов, кабелей или их пучков.

2.1.8. Полосой как несущим элементом электропроводки называется металлическая полоса, закрепленная вплотную к поверхности стены, потолка и т.п., предназначенная для крепления к ней проводов, кабелей или их пучков.

2.1.9. Тросом как несущим элементом электропроводки называется стальная проволока или стальной канат, натянутые в воздухе, предназначенные для подвески к ним проводов, кабелей или их пучков.

2.1.10. Коробом называется закрытая полая конструкция прямоугольного или другого сечения, предназначенная для прокладки в ней проводов и кабелей. Короб должен служить защитой от механических повреждений проложенных в нем проводов и кабелей.

Короба могут быть глухими или с открываемыми крышками, со сплошными или перфорированными стенками и крышками. Глухие короба должны иметь только сплошные стенки со всех сторон и не иметь крышек.

Короба могут применяться в помещениях и наружных установках.

2.1.11. Лотком называется открытая конструкция, предназначенная для прокладки на ней проводов и кабелей.

Лоток не является защитой от внешних механических повреждений проложенных на нем проводов и кабелей. Лотки должны изготовляться из несгораемых материалов. Они могут быть сплошными, перфорированными или решетчатыми. Лотки могут применяться в помещениях и наружных установках.

2.1.12. Чердачным помещением называется такое непроизводственное помещение над верхним этажом здания, потолком которого является крыша здания и которое имеет несущие конструкции (кровлю, фермы, стропила, балки и т.п.) из сгораемых материалов.

Аналогичные помещения и технические этажи, расположенные непосредственно над крышей, перекрытия и конструкции которых выполнены из несгораемых материалов, не рассматриваются как чердачные помещения.


ОБЩИЕ ТРЕБОВАНИЯ

2.1.13. Допустимые длительные токи на провода и кабели электропроводок должны приниматься по гл. 1.3 с учетом температуры окружающей среды и способа прокладки.

2.1.14. Сечения токопроводящих жил проводов и кабелей в электропроводках должны быть не менее приведенных в табл. 2.1.1. Сечения жил для зарядки осветительных арматур должны приниматься по 6.5.12 - 6.5.14. Сечения заземляющих и нулевых защитных проводников должны быть выбраны с соблюдением требований гл. 1.7.


Таблица 2.1.1

НАИМЕНЬШИЕ СЕЧЕНИЯ ТОКОПРОВОДЯЩИХ ЖИЛ ПРОВОДОВ

И КАБЕЛЕЙ В ЭЛЕКТРОПРОВОДКАХ

Проводники

Сечение жил, кв. мм

медных

алюминиевых

Шнуры для присоединения бытовых электроприемников

0,35

-

Кабели для присоединения переносных и передвижных электроприемников в промышленных установках

0,75

-

Скрученные двухжильные провода с многопроволочными жилами для стационарной прокладки на роликах

1

-

Незащищенные изолированные провода дам стационарной электропроводки внутри помещений:

непосредственно по основаниям, на роликах, клицах и тросах

1

2,5

на лотках, в коробах (кроме глухих):

для жил, присоединяемых к винтовым зажимам

1

2

для жил, присоединяемых пайкой:

однопроволочных

0,5

-

многопроволочных (гибких)

0,35

-

на изоляторах

1,5

4

Незащищенные изолированные провода в наружных электропроводках:

по стенам, конструкциям или опорам на изоляторах;

2,5

4

вводы от воздушной линии под навесами на роликах

1,5

2,5

Незащищенные и защищенные изолированные провода и кабели в трубах, металлических рукавах и глухих коробах

1

2

Кабели и защищенные изолированные провода для стационарной электропроводки (без труб, рукавов и глухих коробов):

для жил, присоединяемых к винтовым зажимам

1

2

для жил, присоединяемых пайкой:

однопроволочных

0,5

-

многопроволочных (гибких)

0,35

-

Защищенные и незащищенные провода и кабели, прокладываемые в замкнутых каналах или замоноличенно (в строительных конструкциях или под штукатуркой)

1

2

2.1.15. В стальных и других механических прочных трубах, рукавах, коробах, лотках и замкнутых каналах строительных конструкций зданий допускается совместная прокладка проводов и кабелей (за исключением взаиморезервируемых):

1. Всех цепей одного агрегата.

2. Силовых и контрольных цепей нескольких машин, панелей, щитов, пультов и т.п., связанных технологическим процессом.

3. Цепей, питающих сложный светильник.

4. Цепей нескольких групп одного вида освещения (рабочего или аварийного) с общим числом проводов в трубе не более восьми.

5. Осветительных цепей до 42 В с цепями выше 42 В при условии заключения проводов цепей до 42 В в отдельную изоляционную трубу.

2.1.16. В одной трубе, рукаве, коробе, пучке, замкнутом канале строительной конструкции или на одном лотке запрещается совместная прокладка взаиморезервируемых цепей, цепей рабочего и аварийного эвакуационного освещения, а также цепей до 42 В с цепями выше 42 В (исключение см. в 2.1.15, п. 5 и в 6.1.16, п. 1). Прокладка этих цепей допускается лишь в разных отсеках коробов и лотков, имеющих сплошные продольные перегородки с пределом огнестойкости не менее 0,25 ч из несгораемого материала.

Допускается прокладка цепей аварийного (эвакуационного) и рабочего освещения по разным наружным сторонам профиля (швеллера, уголка и т.п.).

2.1.17. В кабельных сооружениях, производственных помещениях и электропомещениях для электропроводок следует применять провода и кабели с оболочками только из трудносгораемых или несгораемых материалов, а незащищенные провода - с изоляцией только из трудносгораемых или несгораемых материалов.

2.1.18. При переменном или выпрямленном токе прокладка фазных и нулевого (или прямого и обратного) проводников в стальных трубах или в изоляционных трубах со стальной оболочкой должна осуществляться в одной общей трубе.

Допускается прокладывать фазный и нулевой рабочий (или прямой и обратный) проводники в отдельных стальных трубах или в изоляционных трубах со стальной оболочкой, если длительный ток нагрузки в проводниках не превышает 25 А.

2.1.19. При прокладке проводов и кабелей в трубах, глухих коробах, гибких металлических рукавах и замкнутых каналах должна быть обеспечена возможность замены проводов и кабелей.

2.1.20. Конструктивные элементы зданий и сооружений, замкнутые каналы и пустоты которых используются для прокладки проводов и кабелей, должны быть несгораемыми.

2.1.21. Соединение, ответвление и оконцевание жил проводов и кабелей должны производиться при помощи опрессовки, сварки, пайки или сжимов (винтовых, болтовых и т.п.) в соответствии с действующими инструкциями, утвержденными в установленном порядке.

2.1.22. В местах соединения, ответвления и присоединения жил проводов или кабелей должен быть предусмотрен запас провода (кабеля), обеспечивающий возможность повторного соединения, ответвления или присоединения.

2.1.23. Места соединения и ответвления проводов и кабелей должны быть доступны для осмотра и ремонта.

2.1.24. В местах соединения и ответвления провода и кабели не должны испытывать механических усилий тяжения.

2.1.25. Места соединения и ответвления жил проводов и кабелей, а также соединительные и ответвительные сжимы и т.п. должны иметь изоляцию, равноценную изоляции жил целых мест этих проводов и кабелей.

2.1.26. Соединение и ответвление проводов и кабелей, за исключением проводов, проложенных на изолирующих опорах, должны выполняться в соединительных и ответвительных коробках, в изоляционных корпусах соединительных и ответвительных сжимов, в специальных нишах строительных конструкций, внутри корпусов электроустановочных изделий, аппаратов и машин. При прокладке на изолирующих опорах соединение или ответвление проводов следует выполнять непосредственно у изолятора, клицы или на них, а также на ролике.

2.1.27. Конструкция соединительных и ответвительных коробок и сжимов должна соответствовать способам прокладки и условиям окружающей среды.

2.1.28. Соединительные и ответвительные коробки и изоляционные корпуса соединительных и ответвительных сжимов должны быть, как правило, изготовлены из несгораемых или трудносгораемых материалов.

2.1.29. Металлические элементы электропроводок (конструкции, короба, лотки, трубы, рукава, коробки, скобы и т.п.) должны быть защищены от коррозии в соответствии с условиями окружающей среды.

2.1.30. Электропроводки должны быть выполнены с учетом возможных перемещений их в местах пересечений с температурными и осадочными швами.


ВЫБОР ВИДА ЭЛЕКТРОПРОВОДКИ, ВЫБОР ПРОВОДОВ

И КАБЕЛЕЙ И СПОСОБА ИХ ПРОКЛАДКИ

2.1.31. Электропроводка должна соответствовать условиям окружающей среды, назначению и ценности сооружений, их конструкции и архитектурным особенностям. Электропроводка должна обеспечивать возможность легкого распознания по всей длине проводников по цветам:

голубого цвета - для обозначения нулевого рабочего или среднего проводника электрической сети;

двухцветной комбинации зелено-желтого цвета - для обозначения защитного или нулевого защитного проводника;

двухцветной комбинации зелено-желтого цвета по всей длине с голубыми метками на концах линии, которые наносятся при монтаже, - для обозначения совмещенного нулевого рабочего и нулевого защитного проводника;

черного, коричневого, красного, фиолетового, серого, розового, белого, оранжевого, бирюзового цвета - для обозначения фазного проводника.

Электропроводка должна обеспечивать возможность легкого распознавания по всей длине проводников по цветам:

голубого цвета - для обозначения нулевого рабочего или среднего проводника электрической сети;

двухцветной комбинации зелено - желтого цвета - для обозначения защитного или нулевого защитного проводника;

двухцветной комбинации зелено - желтого цвета по всей длине с голубыми метками на концах линии, которые наносятся при монтаже для обозначения совмещенного нулевого рабочего и нулевого защитного проводника;

черного, коричневого, красного, фиолетового, серого, розового, белого, оранжевого, бирюзового цвета - для обозначения фазного проводника.

2.1.32. При выборе вида электропроводки и способа прокладки проводов и кабелей должны учитываться требования электробезопасности и пожарной безопасности.

2.1.33. Выбор видов электропроводки, выбор проводов и кабелей и способа их прокладки следует осуществлять в соответствии с табл. 2.1.2.


Таблица 2.1.2

ВЫБОР ВИДОВ ЭЛЕКТРОПРОВОДОК, СПОСОБОВ

ПРОКЛАДКИ ПРОВОДОВ И КАБЕЛЕЙ

Условия окружающей среды

Вид электропроводки и способ прокладки

Провода и кабели

Открытые электропроводки

Сухие и влажные помещения

На роликах и клицах

Незащищенные одножильные провода

Сухие помещения

То же

Скрученные двухжильные провода

Помещения всех видов и наружные установки

На изоляторах, а также на роликах, предназначенных для применения в сырых местах. В наружных установках ролики для сырых мест (больших размеров) допускается применять только в местах, где исключена возможность непосредственного попадания на электропроводку дождя или снега (под навесами)

Незащищенные одножильные провода

Наружные установки

Непосредственно по поверхности стен, потолков и на струнах, полосах и других несущих конструкциях

Кабель в неметаллической и металлической оболочках

Помещения всех видов

То же

Незащищенные и защищенные одно- и многожильные провода. Кабели в неметаллической и металлической оболочках

Помещения всех видов и наружные установки

На лотках и в коробах соткрываемыми крышками

То же

Помещения всех видов и наружные установки (только специальные провода с несущим тросом для наружных установок или кабели)

На тросах

Специальные провода с несущим тросом. Незащищенные и защищенные одно- и многожильные провода. Кабели в неметаллической и металлической оболочках

Скрытые электропроводки

Помещения всех видов и наружные установки

В неметаллических трубах из сгораемых материалов (несамозатухающий полиэтилен и т.п.). В замкнутых каналах строительных конструкций. Под штукатуркой.

Незащищенные и защищенные, одно- и многожильные провода. Кабели в неметаллической оболочке

Исключения:

1. Запрещается применение изоляционных труб с металлической оболочкой в сырых, особо сырых помещениях и наружных установках.

2. Запрещается применение стальных труб и стальных глухих коробов с толщиной стенок 2 мм и менее в сырых, особо сырых помещениях и наружных установках

Сухие, влажные и сырые помещения

Замоноличенно в строительных конструкциях при их изготовлении

Незащищенные провода

Открытые и скрытые электропроводки

Помещения всех видов и наружные установки

В металлических гибких рукавах. В стальных трубах (обыкновенных и тонкостенных) и глухих стальных коробах. В неметаллических трубах и неметаллических глухих коробах из трудносгораемых материалов. В изоляционных трубах с металлической оболочкой.

Незащищенные и защищенные одно- и многожильные провода. Кабели в неметаллической оболочке

Исключения:

1. Запрещается применение изоляционных труб с металлической оболочкой в сырых, особо сырых помещениях и наружных установках.

2. Запрещается применение стальных труб и стальных глухих коробов с толщиной стенок 2 мм и менее в сырых, особо сырых помещениях и наружных установках

При наличии одновременно двух или более условий, характеризующих окружающую среду, электропроводка должна соответствовать всем этим условиям.

2.1.34. Оболочки и изоляция проводов и кабелей, применяемых в электропроводках, должны соответствовать способу прокладки и условиям окружающей среды. Изоляция, кроме того, должна соответствовать номинальному напряжению сети.

При наличии специальных требований, обусловленных характеристиками установки, изоляция проводов и защитные оболочки проводов и кабелей должны быть выбраны с учетом этих требований (см. также 2.1.50 и 2.1.51).

2.1.35. Нулевые рабочие проводники должны иметь изоляцию, равноценную изоляции фазных проводников.

В производственных нормальных помещениях допускается использование стальных труб и тросов открытых электропроводок, а также металлических корпусов открыто установленных токопроводов, металлических конструкций зданий, конструкций производственного назначения (например, фермы, колонны, подкрановые пути) и механизмов в качестве одного из рабочих проводников линии в сетях напряжением до 42 В. При этом должны быть обеспечены непрерывность и достаточная проводимость этих проводников, видимость и надежная сварка стыков.

Использование указанных выше конструкций в качестве рабочего проводника не допускается, если конструкции находятся в непосредственной близости от сгораемых частей зданий или конструкций.

2.1.36. Прокладка проводов и кабелей, труб и коробов с проводами и кабелями по условиям пожарной безопасности должна удовлетворять требованиям табл. 2.1.3.


Таблица 2.1.3

ВЫБОР ВИДОВ ЭЛЕКТРОПРОВОДОК И СПОСОБОВ ПРОКЛАДКИ

ПРОВОДОВ И КАБЕЛЕЙ ПО УСЛОВИЯМ ПОЖАРНОЙ БЕЗОПАСНОСТИ

Вид электропроводки и способ прокладки по основаниям и конструкциям

Провода и кабели

из сгораемых материалов

из несгораемых или трудносгораемых материалов

Открытые электропроводки

На роликах, изоляторах или с подкладкой несгораемых материалов <*>

Непосредственно

Незащищенные провода; защищенные провода и кабели в оболочке из сгораемых материалов

Непосредственно

- " -

Защищенные провода и кабели в оболочке из несгораемых и трудносгораемых материалов

В трубах и коробах из несгораемых материалов

В трубах и коробах из трудносгораемых и несгораемых материалов

Незащищенные и защищенные провода и кабели в оболочке из сгораемых, трудносгораемых материалов

Скрытые электропроводки

С подкладкой несгораемых материалов <*> и последующим оштукатуриванием или защитой со всех сторон сплошным слоем других несгораемых материалов

Непосредственно

Незащищенные провода; защищенные провода и кабели в оболочке из сгораемых материалов

С подкладкой несгораемых материалов <*>

- " -

Защищенные провода и кабели в оболочке из трудносгораемых материалов

Непосредственно

- " -

То же из несгораемых

В трубах и коробах из трудносгораемых материалов - с подкладкой под трубы и короба несгораемых материалов <*> и последующим заштукатуриванием <**>

В трубах и коробах:

из сгораемых материалов - замоноличенно, в бороздах и т.п., в сплошном слое несгораемых материалов<***>

Незащищенные провода и кабели в оболочке из сгораемых, трудносгораемых и несгораемых материалов

То же из несгораемых материалов - непосредственно

То же из трудносгораемых и несгораемых материалов - непосредственно

--------------------------------

<*> Подкладка из несгораемых материалов должна выступать с каждой стороны провода, кабеля, трубы или короба не менее чем на 10 мм.

<**> Заштукатуривание трубы осуществляется сплошным слоем штукатурки, алебастра и т.п. толщиной не менее 10 мм над трубой.

<***> Сплошным слоем несгораемого материала вокруг трубы (короба) может быть слой штукатурки, алебастрового, цементного раствора или бетона толщиной не менее 10 мм.

2.1.37. При открытой прокладке защищенных проводов (кабелей) с оболочками из сгораемых материалов и незащищенных проводов расстояние в свету от провода (кабеля) до поверхности оснований, конструкций, деталей из сгораемых материалов должно составлять не менее 10 мм. При невозможности обеспечить указанное расстояние провод (кабель) следует отделять от поверхности слоем несгораемого материала, выступающим с каждой стороны провода (кабеля) не менее чем на 10 мм.

2.1.38. При скрытой прокладке защищенных проводов (кабелей) с оболочками из сгораемых материалов и незащищенных проводов в закрытых нишах, в пустотах строительных конструкций (например, между стеной и облицовкой), в бороздах и т.п. с наличием сгораемых конструкций необходимо защищать провода и кабели сплошным слоем несгораемого материала со всех сторон.

2.1.39. При открытой прокладке труб и коробов из трудносгораемых материалов по несгораемым и трудносгораемым основаниям и конструкциям расстояние в свету от трубы (короба) до поверхности конструкций, деталей из сгораемых материалов должно составлять не менее 100 мм. При невозможности обеспечить указанное расстояние трубу (короб) следует отделять со всех сторон от этих поверхностей сплошным слоем несгораемого материала (штукатурка, алебастр, цементный раствор, бетон и т.п.) толщиной не менее 10 мм.

2.1.40. При скрытой прокладке труб и коробов из трудносгораемых материалов в закрытых нишах, в пустотах строительных конструкций (например, между стеной и облицовкой), в бороздах и т.п. трубы и короба следует отделять со всех сторон от поверхностей конструкций, деталей из сгораемых материалов сплошным слоем несгораемого материала толщиной не менее 10 мм.

2.1.41. При пересечениях на коротких участках электропроводки с элементами строительных конструкций из сгораемых материалов эти участки должны быть выполнены с соблюдением требований 2.1.36 - 2.1.40.

2.1.42. В местах, где вследствие высокой температуры окружающей среды применение проводов и кабелей с изоляцией и оболочками нормальной теплостойкости невозможно или приводит к нерациональному повышению расхода цветного металла, следует применять провода и кабели с изоляцией и оболочками повышенной теплостойкости.

2.1.43. В сырых и особо сырых помещениях и наружных установках изоляция проводов и изолирующие опоры, а также опорные и несущие конструкции, трубы, короба и лотки должны быть влагостойкими.

2.1.44. В пыльных помещениях не рекомендуется применять способы прокладки, при которых на элементах электропроводки может скапливаться пыль, а удаление ее затруднительно.

2.1.45. В помещениях и наружных установках с химически активной средой все элементы электропроводки должны быть стойкими по отношению к среде либо защищены от ее воздействия.

2.1.46. Провода и кабели, имеющие несветостойкую наружную изоляцию или оболочку, должны быть защищены от воздействия прямых солнечных лучей.

2.1.47. В местах, где возможны механические повреждения электропроводки, открыто проложенные провода и кабели должны быть защищены от них своими защитными оболочками, а если такие оболочки отсутствуют или недостаточно стойки по отношению к механическим воздействиям, - трубами, коробами, ограждениями или применением скрытой электропроводки.

2.1.48. Провода и кабели должны применяться лишь в тех областях, которые указаны в стандартах и технических условиях на кабели (провода).

2.1.49. Для стационарных электропроводок должны применяться преимущественно провода и кабели с алюминиевыми жилами. Исключения см. в 2.1.70, 3.4.3, 3.4.12, 5.5.6, 6.5.12 - 6.5.14, 7.2.53 и 7.3.93.

Не допускается применение проводов и кабелей с алюминиевыми жилами для присоединения к электротехническим устройствам, установленным непосредственно на виброизолирующих опорах.

В музеях, картинных галереях, библиотеках, архивах и других хранилищах союзного значения следует применять провода и кабели только с медными жилами.

2.1.50. Для питания переносных и передвижных электроприемников следует применять шнуры и гибкие кабели с медными жилами, специально предназначенные для этой цели, с учетом возможных механических воздействий. Все жилы указанных проводников, в том числе заземляющая, должны быть в общей оболочке, оплетке или иметь общую изоляцию.

Для механизмов, имеющих ограниченное перемещение (краны, передвижные пилы, механизмы ворот и пр.), следует применять такие конструкции токоподвода к ним, которые защищают жилы проводов и кабелей от излома (например, шлейфы гибких кабелей, каретки для подвижной подвески гибких кабелей).

2.1.51. При наличии масел и эмульсий в местах прокладки проводов следует применять провода с маслостойкой изоляцией либо защищать провода от их воздействия.


ОТКРЫТЫЕ ЭЛЕКТРОПРОВОДКИ ВНУТРИ ПОМЕЩЕНИЙ

2.1.52. Открытую прокладку незащищенных изолированных проводов непосредственно по основаниям, на роликах, изоляторах, на тросах и лотках следует выполнять:

1. При напряжении выше 42 В в помещениях без повышенной опасности и при напряжении до 42 В в любых помещениях - на высоте не менее 2 м от уровня пола или площадки обслуживания.

2. При напряжении выше 42 В в помещениях с повышенной опасностью и особо опасных - на высоте не менее 2,5 м от уровня пола или площадки обслуживания.

Данные требования не распространяются на спуски к выключателям, розеткам, пусковым аппаратам, щиткам, светильникам, устанавливаемым на стене.

В производственных помещениях спуски незащищенных проводов к выключателям, розеткам, аппаратам, щиткам и т.п. должны быть защищены от механических воздействий до высоты не менее 1,5 м от уровня пола или площадки обслуживания.

В бытовых помещениях промышленных предприятий, в жилых и общественных зданиях указанные спуски допускается не защищать от механических воздействий.

В помещениях, доступных только для специально обученного персонала, высота расположения открыто проложенных незащищенных изолированных проводов не нормируется.

2.1.53. В крановых пролетах незащищенные изолированные провода следует прокладывать на высоте не менее 2,5 м от уровня площадки тележки крана (если площадка расположена выше настила моста крана) или от настила моста крана (если настил расположен выше площадки тележки). Если это невозможно, то должны быть выполнены защитные устройства для предохранения персонала, находящегося на тележке и мосту крана, от случайного прикосновения к проводам. Защитное устройство должно быть установлено на всем протяжении проводов или на самом мосту крана в пределах расположения проводов.

2.1.54. Высота открытой прокладки защищенных изолированных проводов, кабелей, а также проводов и кабелей в трубах, коробах со степенью защиты не ниже IP20, в гибких металлических рукавах от уровня пола или площадки обслуживания не нормируется.

2.1.55. Если незащищенные изолированные провода пересекаются с незащищенными или защищенными изолированными проводами с расстоянием между проводами менее 10 мм, то в местах пересечения на каждый незащищенный провод должна быть наложена дополнительная изоляция.

2.1.56. При пересечении незащищенных и защищенных проводов и кабелей с трубопроводами расстояния между ними в свету должны быть не менее 50 мм, а с трубопроводами, содержащими горючие или легковоспламеняющиеся жидкости и газы, - не менее 100 мм. При расстоянии от проводов и кабелей до трубопроводов менее 250 мм провода и кабели должны быть дополнительно защищены от механических повреждений на длине не менее 250 мм в каждую сторону от трубопровода.

При пересечении с горячими трубопроводами провода и кабели должны быть защищены от воздействия высокой температуры или должны иметь соответствующее исполнение.

2.1.57. При параллельной прокладке расстояние от проводов и кабелей до трубопроводов должно быть не менее 100 мм, а до трубопроводов с горючими или легковоспламеняющимися жидкостями и газами - не менее 400 мм.

Провода и кабели, проложенные параллельно горячим трубопроводам, должны быть защищены от воздействия высокой температуры либо должны иметь соответствующее исполнение.

2.1.58. В местах прохода проводов и кабелей через стены, междуэтажные перекрытия или выхода их наружу необходимо обеспечивать возможность смены электропроводки. Для этого проход должен быть выполнен в трубе, коробе, проеме и т.п. С целью предотвращения проникновения и скопления воды и распространения пожара в местах прохода через стены, перекрытия или выхода наружу следует заделывать зазоры между проводами, кабелями и трубой (коробом, проемом и т.п.), а также резервные трубы (короба, проемы и т.п.) легко удаляемой массой от несгораемого материала. Заделка должна допускать замену, дополнительную прокладку новых проводов и кабелей и обеспечивать предел огнестойкости проема не менее предела огнестойкости стены (перекрытия).

2.1.59. При прокладке незащищенных проводов на изолирующих опорах провода должны быть дополнительно изолированы (например, изоляционной трубой) в местах проходов через стены или перекрытия. При проходе этих проводов из одного сухого или влажного помещения в другое сухое или влажное помещение все провода одной линии допускается прокладывать в одной изоляционной трубе.

При проходе проводов из сухого или влажного помещения в сырое, из одного сырого помещения в другое сырое или при выходе проводов из помещения наружу каждый провод должен прокладываться в отдельной изоляционной трубе. При выходе из сухого или влажного помещения в сырое или наружу здания соединения проводов должны выполняться в сухом или влажном помещении.

2.1.60. На лотках, опорных поверхностях, тросах, струнах, полосах и других несущих конструкциях допускается прокладывать провода и кабели вплотную один к другому пучками (группами) различной формы (например, круглой, прямоугольной в несколько слоев).

Провода и кабели каждого пучка должны быть скреплены между собой.

2.1.61. В коробах провода и кабели допускается прокладывать многослойно с упорядоченным и произвольным (россыпью) взаимным расположением. Сумма сечений проводов и кабелей, рассчитанных по их наружным диаметрам, включая изоляцию и наружные оболочки, не должна превышать: для глухих коробов 35% сечения короба в свету; для коробов с открываемыми крышками 40%.

2.1.62. Допустимые длительные токи на провода и кабели, проложенные пучками (группами) или многослойно, должны приниматься с учетом снижающих коэффициентов, учитывающих количество и расположение проводников (жил) в пучке, количество и взаимное расположение пучков (слоев), а также наличие ненагруженных проводников.

2.1.63. Трубы, короба и гибкие металлические рукава электропроводок должны прокладываться так, чтобы в них не могла скапливаться влага, в том числе от конденсации паров, содержащихся в воздухе.

2.1.64. В сухих непыльных помещениях, в которых отсутствуют пары и газы, отрицательно воздействующие на изоляцию и оболочку проводов и кабелей, допускается соединение труб, коробов и гибких металлических рукавов без уплотнения.

Соединение труб, коробов и гибких металлических рукавов между собой, а также с коробами, корпусами электрооборудования и т.п. должно быть выполнено:

в помещениях, которые содержат пары или газы, отрицательно воздействующие на изоляцию или оболочки проводов и кабелей, в наружных установках и в местах, где возможно попадание в трубы, короба и рукава масла, воды или эмульсии, - с уплотнением; короба в этих случаях должны быть со сплошными стенками и с уплотненными сплошными крышками либо глухими, разъемные короба - с уплотнениями в местах разъема, а гибкие металлические рукава - герметичными;

в пыльных помещениях - с уплотнением соединений и ответвлений труб, рукавов и коробов для защиты от пыли.

2.1.65. Соединение стальных труб и коробов, используемых в качестве заземляющих или нулевых защитных проводников, должно соответствовать требованиям, приведенным в настоящей главе и гл. 1.7.


СКРЫТЫЕ ЭЛЕКТРОПРОВОДКИ ВНУТРИ ПОМЕЩЕНИЙ

2.1.66. Скрытые электропроводки в трубах, коробах и гибких металлических рукавах должны быть выполнены с соблюдением требований, приведенных в 2.1.63 - 2.1.65, причем во всех случаях - с уплотнением. Короба скрытых электропроводок должны быть глухими.

2.1.67. Выполнение электропроводки в вентиляционных каналах и шахтах запрещается. Допускается пересечение этих каналов и шахт одиночными проводами и кабелями, заключенными в стальные трубы.

2.1.68. Прокладку проводов и кабелей за подвесными потолками следует выполнять в соответствии с требованиями настоящей главы и гл. 7.1.


ЭЛЕКТРОПРОВОДКИ В ЧЕРДАЧНЫХ ПОМЕЩЕНИЯХ

2.1.69. В чердачных помещениях могут применяться следующие виды электропроводок:

открытая;

проводами и кабелями, проложенными в трубах, а также защищенными проводами и кабелями в оболочках из несгораемых или трудносгораемых материалов - на любой высоте;

незащищенными изолированными одножильными проводами на роликах или изоляторах (в чердачных помещениях производственных зданий - только на изоляторах) - на высоте не менее 2,5 м; при высоте до проводов менее 2,5 м они должны быть защищены от прикосновения и механических повреждений;

скрытая: в стенах и перекрытиях из несгораемых материалов - на любой высоте.

2.1.70. Открытые электропроводки в чердачных помещениях должны выполняться проводами и кабелями с медными жилами.

Провода и кабели с алюминиевыми жилами допускаются в чердачных помещениях: зданий с несгораемыми перекрытиями - при открытой прокладке их в стальных трубах или скрытой прокладке их в несгораемых стенах и перекрытиях; производственных зданий сельскохозяйственного назначения со сгораемыми перекрытиями - при открытой прокладке их в стальных трубах с исключением проникновения пыли внутрь труб и соединительных (ответвительных) коробок; при этом должны быть применены резьбовые соединения.

2.1.71. Соединение и ответвление медных или алюминиевых жил проводов и кабелей в чердачных помещениях должны осуществляться в металлических соединительных (ответвительных) коробках сваркой, опрессовкой или с применением сжимов, соответствующих материалу, сечению и количеству жил.

2.1.72. Электропроводка в чердачных помещениях, выполненная с применением стальных труб, должна отвечать также требованиям, приведенным в 2.1.63 - 2.1.65.

2.1.73. Ответвления от линий, проложенных в чердачных помещениях, к электроприемникам, установленным вне чердаков, допускаются при условии прокладки линий и ответвлений открыто в стальных трубах или скрыто в несгораемых стенах (перекрытиях).

2.1.74. Коммутационные аппараты в цепях светильников и других электроприемников, установленных непосредственно в чердачных помещениях, должны быть установлены вне этих помещений.


НАРУЖНЫЕ ЭЛЕКТРОПРОВОДКИ

2.1.75. Незащищенные изолированные провода наружной электропроводки должны быть расположены или ограждены таким образом, чтобы они были недоступны для прикосновения с мест, где возможно частое пребывание людей (например, балкон, крыльцо).

От указанных мест эти провода, проложенные открыто по стенам, должны находиться на расстоянии не менее, м:

При горизонтальной прокладке:
  под балконом, крыльцом, а также над крышей
  промышленного здания ...................................... 2,5
  над окном ................................................. 0,5
  под балконом .............................................. 1,0
  под окном (от подоконника) ................................ 1,0
При вертикальной прокладке до окна .......................... 0,75
То же, но до балкона ........................................ 1,0
От земли .................................................... 2,75

При подвеске проводов на опорах около зданий расстояния от проводов до балконов и окон должны быть не менее 1,5 м при максимальном отклонении проводов.

Наружная электропроводка по крышам жилых, общественных зданий и зрелищных предприятий не допускается, за исключением вводов в здания (предприятия) и ответвлений к этим вводам (см. 2.1.79).

Незащищенные изолированные провода наружной электропроводки в отношении прикосновения следует рассматривать как неизолированные.

2.1.76. Расстояния от проводов, пересекающих пожарные проезды и пути для перевозки грузов, до поверхности земли (дороги) в проезжей части должны быть не менее 6 м, в непроезжей части - не менее 3,5 м.

2.1.77. Расстояния между проводами должно быть: при пролете до 6 м - не менее 0,1 м, при пролете более 6 м - не менее 0,15 м. Расстояния от проводов до стен и опорных конструкций должны быть не менее 50 мм.

2.1.78. Прокладка проводов и кабелей наружной электропроводки в трубах, коробах и гибких металлических рукавах должна выполняться в соответствии с требованиями, приведенными в 2.1.63 - 2.1.65, причем во всех случаях с уплотнением. Прокладка проводов в стальных трубах и коробах в земле вне зданий не допускается.

2.1.79. Вводы в здания рекомендуется выполнять через стены в изоляционных трубах таким образом, чтобы вода не могла скапливаться в проходе и проникать внутрь здания.

Расстояние от проводов перед вводом и проводов ввода до поверхности земли должно быть не менее 2,75 м (см. также 2.4.37 и 2.4.56).

Расстояние между проводами у изоляторов ввода, а также от проводов до выступающих частей здания (свесы крыши и т.п.) должно быть не менее 0,2 м.

Вводы допускается выполнять через крыши в стальных трубах. При этом расстояние по вертикали от проводов ответвления к вводу и от проводов ввода до крыши должно быть не менее 2,5 м.

Для зданий небольшой высоты (торговые павильоны, киоски, здания контейнерного типа, передвижные будки, фургоны и т.п.), на крышах которых исключено пребывание людей, расстояние в свету от проводов ответвлений к вводу и проводов ввода до крыши допускается принимать не менее 0,5 м. При этом расстояние от проводов до поверхности земли должно быть не менее 2,75 м.


Утверждена

Главтехуправлением

и Госэнергонадзором

Минэнерго СССР

15 февраля 1977 года

Согласована

с Госстроем СССР

28 января 1977 года

Глава 2.2. ТОКОПРОВОДЫ НАПРЯЖЕНИЕМ ДО 35 КВ


ОБЛАСТЬ ПРИМЕНЕНИЯ, ОПРЕДЕЛЕНИЯ

2.2.1. Настоящая глава Правил распространяется на токопроводы переменного и постоянного тока напряжением до 35 кВ. Дополнительные требования к токопроводам, устанавливаемым во взрывоопасных и пожароопасных зонах, приведены соответственно в гл. 7.3. и 7.4. Глава не распространяется на специальные токопроводы для электролизных установок, короткой сети электротермических установок, а также на токопроводы, устройство которых определяется специальными правилами или нормами.

2.2.2. Токопроводом называется устройство, предназначенное для передачи и распределения электроэнергии, состоящее из неизолированных или изолированных проводников и относящихся к ним изоляторов, защитных оболочек, ответвительных устройств, поддерживающих и опорных конструкций.

2.2.3. В зависимости от вида проводников токопроводы подразделяются на гибкие (при использовании проводов) и жесткие (при использовании жестких шин).

Жесткий токопровод до 1 кВ заводского изготовления, поставляемый комплектными секциями, называется шинопроводом.

В зависимости от назначения шинопроводы подразделяются на:

магистральные, предназначенные в основном для присоединения к ним распределительных шинопроводов и силовых распределительных пунктов, щитов и отдельных мощных электроприемников;

распределительные, предназначенные в основном для присоединения к ним электроприемников;

троллейные, предназначенные для питания передвижных электроприемников;

осветительные, предназначенные для питания светильников и электроприемников небольшой мощности.

2.2.4. Токопровод напряжением выше 1 кВ, выходящий за пределы одной электроустановки, называется протяженным.


ОБЩИЕ ТРЕБОВАНИЯ

2.2.5. В сетях 6 - 35 кВ промышленных предприятий для передачи в одном направлении мощности более 15 - 20 МВ x А при напряжении 6 кВ, более 25 - 35 МВ x А при напряжении 10 кВ и более 35 МВ x А при напряжении 35 кВ следует применять, как правило, гибкие или жесткие токопроводы преимущественно перед линиями, выполненными из большого числа параллельно прокладываемых кабелей.

Открытую прокладку токопроводов следует применять во всех случаях, когда она возможна по условиям генплана объекта электроснабжения и окружающей среды.

2.2.6. В местах, где в воздухе содержатся химически активные вещества, воздействующие разрушающе на токоведущие части, поддерживающие конструкции и изоляторы, токопроводы должны иметь соответствующее исполнение или должны быть приняты другие меры их защиты от указанных воздействий.

2.2.7. Расчет и выбор проводников, изоляторов, арматуры, конструкций и аппаратов токопроводов следует производить как по нормальным условиям работы (соответствие рабочему напряжению и току), так и по условиям работы при коротких замыканиях (см. гл. 1.4).

2.2.8. Токоведущие части должны иметь обозначение и расцветку в соответствии с требованиями гл. 1.1.

2.2.9. Токоведущие части токопроводов следует выполнять, как правило, из алюминиевых, сталеалюминиевых и стальных проводов, труб и шин профильного сечения.

2.2.10. Для заземления токоведущих частей токопроводов должны предусматриваться стационарные заземляющие ножи или переносные заземления в соответствии с требованиями 4.2.25 (см. также 2.2.30, п. 3).

2.2.11. Механические нагрузки на токопроводы, а также расчетные температуры окружающей среды следует определять в соответствии с требованиями, приведенными в 4.2.46 - 4.2.49.

2.2.12. Компоновка и конструктивное выполнение токопроводов должны предусматривать возможность удобного и безопасного производства монтажных и ремонтных работ.

2.2.13. Токопроводы выше 1 кВ на открытом воздухе должны быть защищены от грозовых перенапряжений в соответствии с требованиями 4.2.167 и 4.2.168.

2.2.14. В токопроводах переменного тока с симметричной нагрузкой при токе 1 кА и более рекомендуется, а при токе 1,6 кА и более следует предусматривать меры по снижению потерь электроэнергии в шинодержателях, арматуре и конструкциях от воздействия магнитного поля.

При токах 2,5 кА и более должны быть, кроме того, предусмотрены меры по снижению и выравниванию индуктивного сопротивления (например, расположение полос в пакетах по сторонам квадрата, применение спаренных фаз, профильных шин, круглых и квадратных полых труб, транспозиции). Для протяженных гибких токопроводов рекомендуется также применение внутрифазных транспозиций, количество которых должно определяться расчетным путем в зависимости от длины токопровода.

При несимметричных нагрузках значение тока, при котором необходимо предусматривать меры по снижению потерь электроэнергии от воздействия магнитного поля, должно в каждом отдельном случае определяться расчетом.

2.2.15. В случаях, когда изменение температуры, вибрация трансформаторов, неравномерная осадка здания и т.п. могут повлечь за собой опасные механические напряжения в проводниках, изоляторах или других элементах токопроводов, следует предусматривать меры к устранению этих напряжений (компенсаторы или подобные им приспособления). На жестких токопроводах компенсаторы должны устанавливаться также в местах пересечений с температурными и осадочными швами зданий и сооружений.

2.2.16. Неразъемные соединения токопроводов рекомендуется выполнять при помощи сварки. Для соединения ответвлений с гибкими токопроводами допускается применение прессуемых зажимов.

Соединения проводников из разных материалов должны выполняться так, чтобы была предотвращена коррозия контактных поверхностей.

2.2.17. Выбор сечения токопроводов выше 1 кВ по длительно допустимому току в нормальном и послеаварийном режимах следует производить с учетом ожидаемого роста нагрузок, но не более чем на 25 - 30% выше расчетных.

2.2.18. Для токопроводов, выполняемых с применением неизолированных проводов, длительно допустимые токи следует определять по гл. 1.3 с применением коэффициента 0,8 при отсутствии внутрифазной транспозиции проводов, 0,98 при наличии внутрифазной транспозиции проводов.


ТОКОПРОВОДЫ НАПРЯЖЕНИЕМ ДО 1 КВ

2.2.19. Места ответвлений от токопроводов должны быть доступны для обслуживания.

2.2.20. В производственных помещениях токопроводы исполнения IP00 следует располагать на высоте не менее 3,5 м от уровня пола или площадки обслуживания, а токопроводы исполнения до IP31 - не менее 2,5 м.

Высота установки токопроводов исполнения IP20 и выше с изолированными шинами, а также токопроводов исполнения IP40 и выше не нормируется. Не нормируется также высота установки токопроводов любого исполнения при напряжении сети 42 В и ниже переменного тока и 110 В и ниже постоянного тока.

В помещениях, посещаемых только квалифицированным обслуживающим персоналом (например, в технических этажах зданий и т.п.), высота установки токопроводов исполнения IP20 и выше не нормируется.

В электропомещениях промышленных предприятий высота установки токопроводов исполнения IP00 и выше не нормируется. Места, где возможны случайные прикосновения к токопроводам исполнения IP00, должны быть ограждены.

Токопроводы должны иметь дополнительную защиту в местах, где возможны механические повреждения.

Токопроводы и ограждения, размещаемые над проходами, должны быть установлены на высоте не менее 1,9 м от пола или площадки обслуживания.

Сетчатые ограждения токопроводов должны иметь сетку с ячейками не более 25 x 25 мм.

Конструкции, на которые устанавливают токопроводы, должны быть выполнены из несгораемых материалов и иметь предел огнестойкости не менее 0,25 ч.

Узлы прохода токопроводов через перекрытия, перегородки и стены должны исключать возможность распространения пламени и дыма из одного помещения в другое.

2.2.21. Расстояние от токоведущих частей токопроводов без оболочек (исполнение IP00) до трубопроводов должно быть не менее 1 м, а до технологического оборудования - не менее 1,5 м.

Расстояние от шинопроводов, имеющих оболочки (исполнение IP21; IP31; IP51; IP65), до трубопроводов и технологического оборудования не нормируется.

2.2.22. Расстояние в свету между проводниками разных фаз или полюсов токопроводов без оболочек (IP00) и от них до стен зданий и заземленных конструкций должно быть не менее 50 мм, а до сгораемых элементов зданий - не менее 200 мм.

2.2.23. Коммутационная и защитная аппаратура для ответвлений от токопроводов должна устанавливаться непосредственно на токопроводах или вблизи пункта ответвления (см. также 3.1.16). Эта аппаратура должна быть расположена и ограждена так, чтобы исключалась возможность случайного прикосновения к частям, находящимся под напряжением. Для оперативного управления с уровня пола или площадки обслуживания аппаратами, установленными на недоступной высоте, должны быть предусмотрены соответствующие устройства (тяги, тросы). Аппараты должны иметь различимые с пола или площадки обслуживания признаки, указывающие положение аппарата (включено, отключено).

2.2.24. Для токопроводов следует применять изоляторы из несгораемых материалов (фарфор, стеатит и т.п.).

2.2.25. По всей трассе токопроводов без защитных оболочек (IP00) через каждые 10 - 15 м, а также в местах, посещаемых людьми (посадочные площадки для крановщиков и т.п.), должны быть укреплены предупреждающие плакаты по технике безопасности.

2.2.26. Должны быть предусмотрены меры (например, изоляционные распорки) для предотвращения недопустимого сближения проводников фаз между собой и с оболочкой токопровода при прохождении токов КЗ.

2.2.27. На токопроводы в крановых пролетах распространяются следующие дополнительные требования:

1. Неогражденные токопроводы без защитных оболочек (IP00), прокладываемые по фермам, следует размещать на высоте не менее 2,5 м от уровня настила моста и тележки крана; при прокладке токопроводов ниже 2,5 м, но не ниже уровня нижнего пояса фермы перекрытия должны быть предусмотрены ограждения от случайного прикосновения к ним с настила моста и тележки крана на всем протяжении токопроводов. Допускается устройство ограждения в виде навеса на самом кране под токопроводом.

2. Участки токопроводов без защитных оболочек (IP00) над ремонтными загонами для кранов (см. 5.4.16) должны иметь ограждения, предотвращающие прикосновение к токоведущим частям с настила тележки крана. Ограждение не требуется, если токопровод расположен над этим настилом на уровне не менее 2,5 м или если в этих местах применяются изолированные проводники; в последнем случае наименьшее расстояние до них определяют, исходя из ремонтных условий.

3. Прокладка токопроводов под краном без применения специальных мер защиты от механических повреждений допускается в мертвой зоне крана. Специальных мер защиты от механических повреждений не требуется предусматривать для шинопроводов в оболочке любого исполнения на ток до 630 А, расположенных вблизи технологического оборудования вне мертвой зоны крана.


ТОКОПРОВОДЫ НАПРЯЖЕНИЕМ ВЫШЕ 1 КВ

2.2.28. В производственных помещениях допускается применение токопроводов исполнения IP41 и выше, токопроводы должны быть расположены от уровня пола или площадки обслуживания на высоте не менее 2,5 м.

В производственных помещениях, посещаемых только квалифицированным обслуживающим персоналом (например, в технических этажах зданий и т.п.), высота установки токопроводов исполнения IP41 и выше не нормируется.

В электропомещениях допускается применение токопроводов любого исполнения. Высота установки от уровня пола или площадки обслуживания для токопроводов исполнения ниже IP41 - не менее 2,5 м; IP41 и выше - не нормируется.

2.2.29. На открытом воздухе могут применяться токопроводы всех исполнений (см. также 2.2.5 и 2.2.13).

2.2.30. При размещении токопроводов в туннелях и галереях должны быть выполнены требования 4.2.82, а также следующие требования:

1. Ширина коридоров обслуживания токопроводов, не имеющих оболочки (IP00), должна быть не менее: 1 м при одностороннем расположении и 1,2 м при двустороннем расположении. При длине токопровода более 150 м ширина коридора обслуживания как при одностороннем, так и при двустороннем обслуживании оборудования должна быть увеличена по сравнению с приведенной не менее чем на 0,2 м.

2. Высота ограждения токопроводов, не имеющих оболочки, от уровня пола должна быть не менее 1,7 м.

3. В начале и в конце токопровода, а также в промежуточных точках следует предусматривать стационарные заземляющие ножи или устройства для присоединения переносных заземлений. Число мест установки переносных заземлений должно выбираться таким, чтобы наведенное от соседних токопроводов при КЗ напряжение между двумя соседними точками установки заземлений не превышало 250 В.

2.2.31. В туннелях и галереях, где размещены токопроводы, должно быть выполнено освещение в соответствии с требованиями разд. 6. Освещение туннелей и галерей должно питаться от двух источников с чередованием присоединений ламп к обоим источникам.

Там, где прокладываются токопроводы без оболочек (IP00), осветительная арматура должна быть установлена так, чтобы было обеспечено безопасное ее обслуживание. В этом случае осветительная электропроводка в туннелях и галереях должна быть экранирована (кабели с металлической оболочкой, электропроводки в стальных трубах и др.).

2.2.32. При выполнении туннелей и галерей для токопроводов должны быть соблюдены следующие требования:

1. Сооружения должны выполняться из несгораемых материалов. Несущие строительные конструкции из железобетона должны иметь предел огнестойкости не менее 0,75 ч, а из стального проката - не менее 0,25 ч.

2. Вентиляция должна быть выполнена такой, чтобы разность температур входящего и выходящего воздуха при номинальной нагрузке не превышала 15 град. C. Вентиляционные отверстия должны быть закрыты жалюзи или сетками и защищены козырьками.

3. Внутреннее пространство туннелей и галерей не должно пересекаться какими-либо трубопроводами.

4. Туннели и галереи токопроводов должны быть оборудованы устройствами связи. Аппаратура средств связи и места ее установки должны определяться при конкретном проектировании.


ГИБКИЕ ТОКОПРОВОДЫ НАПРЯЖЕНИЕМ ВЫШЕ 1 КВ

2.2.33. Гибкие токопроводы на открытом воздухе должны прокладываться на самостоятельных опорах. Совмещенная прокладка токопроводов и технологических трубопроводов на общих опорах не допускается.

2.2.34. Расстояние между проводами расщепленной фазы рекомендуется принимать равным не менее чем шести диаметрам применяемых проводов.

2.2.35. Расстояние между токоведущими частями и от них до заземленных конструкций, зданий и других сооружений, а также до полотна автомобильной или железной дороги должно приниматься по гл. 2.5.

2.2.36. Сближение токопроводов со зданиями и сооружениями, содержащими взрывоопасные помещения, а также со взрывоопасными наружными установками должно выполняться в соответствии с требованиями гл. 7.3.

2.2.37. Проверку расстояний от токопроводов до пересекаемых сооружений следует производить с учетом дополнительных весовых нагрузок на провода от междуфазных и внутрифазных распорок и возможной максимальной температуры провода в послеаварийном режиме. Максимальная температура при работе токопровода в послеаварийном режиме принимается равной плюс 70 град. C.

2.2.38. Располагать фазы цепи протяженного токопровода рекомендуется по вершинам равностороннего треугольника.

2.2.39. Конструкция протяжного токопровода должна предусматривать возможность применения переносных заземлений, позволяющих безопасно выполнять работы на отключенной цепи.

Число мест установки переносных заземлений выбирается по 2.2.30, п. 3.

2.2.40. При расчете проводов гибких токопроводов необходимо руководствоваться следующим:

1. Тяжение и напряжение в проводах при различных сочетаниях внешних нагрузок должны приниматься в зависимости от допустимого нормативного тяжения на фазу, обусловленного прочностью применяемых опор и узлов, воспринимающих усилия.

Нормативное тяжение на фазу следует принимать, как правило, не более 9,8 кН (10 тс).

2. Должны учитываться дополнительные весовые нагрузки на провода от междуфазных и внутрифазных распорок.

3. Давление ветра на провода должно рассчитываться по 2.5.30.


Утверждена

Главтехуправлением

Минэнерго СССР

18 августа 1975 года

Согласована

с Госстроем СССР

10 июня 1975 года

Глава 2.3. КАБЕЛЬНЫЕ ЛИНИИ НАПРЯЖЕНИЕМ ДО 220 КВ


ОБЛАСТЬ ПРИМЕНЕНИЯ, ОПРЕДЕЛЕНИЯ

2.3.1. Настоящая глава Правил распространяется на кабельные силовые линии до 220 кВ, а также линии, выполняемые контрольными кабелями. Кабельные линии более высоких напряжений выполняются по специальным проектам. Дополнительные требования к кабельным линиям приведены в гл. 7.3, 7.4 и 7.7.

2.3.2. Кабельной линией называется линия для передачи электроэнергии или отдельных импульсов ее, состоящая из одного или нескольких параллельных кабелей с соединительными, стопорными и концевыми муфтами (заделками) и крепежными деталями, а для маслонаполненных линий, кроме того, с подпитывающими аппаратами и системой сигнализации давления масла.

2.3.3. Кабельным сооружением называется сооружение, специально предназначенное для размещения в нем кабелей, кабельных муфт, а также маслоподпитывающих аппаратов и другого оборудования, предназначенного для обеспечения нормальной работы маслонаполненных кабельных линий. К кабельным сооружениям относятся: кабельные туннели, каналы, короба, блоки, шахты, этажи, двойные полы, кабельные эстакады, галереи, камеры, подпитывающие пункты.

Кабельным туннелем называется закрытое сооружение (коридор) с расположенными в нем опорными конструкциями для размещения на них кабелей и кабельных муфт, со свободным проходом по всей длине, позволяющим производить прокладку кабелей, ремонты и осмотры кабельных линий.

Кабельным каналом называется закрытое и заглубленное (частично или полностью) в грунт, пол, перекрытие и т.п. непроходное сооружение, предназначенное для размещения в нем кабелей, укладку, осмотр и ремонт которых возможно производить лишь при снятом перекрытии.

Кабельной шахтой называется вертикальное кабельное сооружение (как правило, прямоугольного сечения), у которого высота в несколько раз больше стороны сечения, снабженное скобами или лестницей для передвижения вдоль него людей (проходные шахты) или съемной полностью или частично стенкой (непроходные шахты).

Кабельным этажом называется часть здания, ограниченная полом и перекрытием или покрытием, с расстоянием между полом и выступающими частями перекрытия или покрытия не менее 1,8 м.

Двойным полом называется полость, ограниченная стенами помещения, междуэтажным перекрытием и полом помещения со съемными плитами (на всей или части площади).

Кабельным блоком называется кабельное сооружение с трубами (каналами) для прокладки в них кабелей с относящимися к нему колодцами.

Кабельной камерой называется подземное кабельное сооружение, закрываемое глухой съемной бетонной плитой, предназначенное для укладки кабельных муфт или для протяжки кабелей в блоки. Камера, имеющая люк для входа в нее, называется кабельным колодцем.

Кабельной эстакадой называется надземное или наземное открытое горизонтальное или наклонное протяженное кабельное сооружение. Кабельная эстакада может быть проходной или непроходной.

Кабельной галереей называется надземное или наземное закрытое полностью или частично (например, без боковых стен) горизонтальное или наклонное протяженное проходное кабельное сооружение.

2.3.4. Коробом называется - см. 2.1.10.

2.3.5. Лотком называется - см. 2.1.11.

2.3.6. Кабельной маслонаполненной линией низкого или высокого давления называется линия, в которой длительно допустимое избыточное давление составляет:

0,0245 - 0,294 МПа (0,25 - 3,0 кгс/кв. см) для кабелей низкого давления в свинцовой оболочке;

0,0245 - 0,49 МПа (0,25 - 5,0 кгс/кв. см) для кабелей низкого давления в алюминиевой оболочке;

1,08 - 1,57 МПа (11 - 16 кгс/ кв. см) для кабелей высокого давления.

2.3.7. Секцией кабельной маслонаполненной линии низкого давления называется участок линии между стопорными муфтами или стопорной и концевой муфтами.

2.3.8. Подпитывающим пунктом называется надземное, наземное или подземное сооружение с подпитывающими аппаратами и оборудованием (баки питания, баки давления, подпитывающие агрегаты и др.).

2.3.9. Разветвительным устройством называется часть кабельной линии высокого давления между концом стального трубопровода и концевыми однофазными муфтами.

2.3.10. Подпитывающим агрегатом называется автоматически действующее устройство, состоящее из баков, насосов, труб, перепускных клапанов, вентилей, щита автоматики и другого оборудования, предназначенного для обеспечения подпитки маслом кабельной линии высокого давления.


ОБЩИЕ ТРЕБОВАНИЯ

2.3.11. Проектирование и сооружение кабельных линий должны производиться на основе технико-экономических расчетов с учетом развития сети, ответственности и назначения линии, характера трассы, способа прокладки, конструкций кабелей и т.п.

2.3.12. При выборе трассы кабельной линии следует по возможности избегать участков с грунтами, агрессивными по отношению к металлическим оболочкам кабелей (см. также 2.3.44).

2.3.13. Над подземными кабельными линиями в соответствии с действующими правилами охраны электрических сетей должны устанавливаться охранные зоны в размере площадки над кабелями:

для кабельных линий выше 1 кВ по 1 м с каждой стороны от крайних кабелей;

для кабельных линий до 1 кВ по 1 м с каждой стороны от крайних кабелей, а при прохождении кабельных линий в городах под тротуарами - на 0,6 м в сторону зданий сооружений и на 1 м в сторону проезжей части улицы.

Для подводных кабельных линий до и выше 1 кВ в соответствии с указанными правилами должна быть установлена охранная зона, определяемая параллельными прямыми на расстоянии 100 м от крайних кабелей.

Охранные зоны кабельных линий используются с соблюдением требований правил охраны электрических сетей.

2.3.14. Трасса кабельной линии должна выбираться с учетом наименьшего расхода кабеля, обеспечения его сохранности при механических воздействиях, обеспечения защиты от коррозии, вибрации, перегрева и от повреждений соседних кабелей электрической дугой при возникновении КЗ на одном из кабелей. При размещении кабелей следует избегать перекрещиваний их между собой, с трубопроводами и пр.

При выборе трассы кабельной маслонаполненной линии низкого давления принимается во внимание рельеф местности для наиболее рационального размещения и использования на линии подпитывающих баков.

2.3.15. Кабельные линии должны выполняться так, чтобы в процессе монтажа и эксплуатации было исключено возникновение в них опасных механических напряжений и повреждений, для чего:

кабели должны быть уложены с запасом по длине, достаточным для компенсации возможных смещений почвы и температурных деформаций самих кабелей и конструкций, по которым они проложены; укладывать запас кабеля в виде колец (витков) запрещается;

кабели, проложенные горизонтально по конструкциям, стенам, перекрытиям и т.п., должны быть жестко закреплены в конечных точках, непосредственно у концевых заделок, с обеих сторон изгибов и у соединительных и стопорных муфт;

кабели, проложенные вертикально по конструкциям и стенам, должны быть закреплены так, чтобы была предотвращена деформация оболочек и не нарушались соединения жил в муфтах под действием собственного веса кабелей;

конструкции, на которые укладываются небронированные кабели, должны быть выполнены таким образом, чтобы была исключена возможность механического повреждения оболочек кабелей; в местах жесткого крепления оболочки этих кабелей должны быть предохранены от механических повреждений и коррозии при помощи эластичных прокладок;

кабели (в том числе бронированные), расположенные в местах, где возможны механические повреждения (передвижение автотранспорта, механизмов и грузов, доступность для посторонних лип), должны быть защищены по высоте на 2 м от уровня пола или земли и на 0,3 м в земле;

при прокладке кабелей рядом с другими кабелями, находящимися в эксплуатации, должны быть приняты меры для предотвращения повреждения последних;

кабели должны прокладываться на расстоянии от нагретых поверхностей, предотвращающем нагрев кабелей выше допустимого, при этом должна предусматриваться защита кабелей от прорыва горячих веществ в местах установки задвижек и фланцевых соединений.

2.3.16. Защита кабельных линий от блуждающих токов и почвенной коррозии должна удовлетворять требованиям настоящих Правил и СНиП 3-04.03-85 "Защита строительных конструкций и сооружений от коррозии" Госстроя России.

2.3.17. Конструкции подземных кабельных сооружений должны быть рассчитаны с учетом массы кабелей, грунта, дорожного покрытия и нагрузки от проходящего транспорта.

2.3.18. Кабельные сооружения и конструкции, на которых укладываются кабели, должны выполняться из несгораемых материалов. Запрещается выполнение в кабельных сооружениях каких-либо временных устройств, хранение в них материалов и оборудования. Временные кабели должны прокладываться с соблюдением всех требований, предъявляемых к кабельным прокладкам, с разрешения эксплуатирующей организации.

2.3.19. Открытая прокладка кабельных линий должна производиться с учетом непосредственного действия солнечного излучения, а также теплоизлучений от различного рода источников тепла. При прокладке кабелей на географической широте более 65 град. защита от солнечного излучения не требуется.

2.3.20. Радиусы внутренней кривой изгиба кабелей должны иметь по отношению к их наружному диаметру кратности не менее указанных в стандартах или технических условиях на соответствующие марки кабелей.

2.3.21. Радиусы внутренней кривой изгиба жил кабелей при выполнении кабельных заделок должны иметь по отношению к приведенному диаметру жил кратности не менее указанных в стандартах или технических условиях на соответствующие марки кабелей.

2.3.22. Усилия тяжения при прокладке кабелей и протягивании их в трубах определяются механическими напряжениями, допустимыми для жил и оболочек.

2.3.23. Каждая кабельная линия должна иметь свой номер или наименование. Если кабельная линия состоит из нескольких параллельных кабелей, то каждый из них должен иметь тот же номер с добавлением букв А, Б, В и т.д. Открыто проложенные кабели, а также все кабельные муфты должны быть снабжены бирками с обозначением на бирках кабелей и концевых муфт марки, напряжения, сечения, номера или наименования линии; на бирках соединительных муфт - номера муфты и даты монтажа. Бирки должны быть стойкими к воздействию окружающей среды. На кабелях, проложенных в кабельных сооружениях, бирки должны располагаться по длине не реже чем через каждые 50 м.

2.3.24. Охранные зоны кабельных линий, проложенных в земле в незастроенной местности, должны быть обозначены информационными знаками.

Информационные знаки следует устанавливать не реже чем через 500 м, а также в местах изменения направления кабельных линий.

На информационных знаках должны быть указаны ширина охранных зон кабельных линий и номера телефонов владельцев кабельных линий.


ВЫБОР СПОСОБОВ ПРОКЛАДКИ

2.3.25. При выборе способов прокладки силовых кабельных линий до 35 кВ необходимо руководствоваться следующим:

1. При прокладке кабелей в земле рекомендуется в одной траншее прокладывать не более шести силовых кабелей. При большем количестве кабелей рекомендуется прокладывать их в отдельных траншеях с расстоянием между группами кабелей не менее 0,5 м или в каналах, туннелях, по эстакадам и в галереях.

2. Прокладка кабелей в туннелях, по эстакадам и в галереях рекомендуется при количестве силовых кабелей, идущих в одном направлении, более 20.

3. Прокладка кабелей в блоках применяется в условиях большой стесненности по трассе, в местах пересечений с железнодорожными путями и проездами, при вероятности разлива металла и т.п.

4. При выборе способов прокладки кабелей по территориям городов должны учитываться первоначальные капитальные затраты и затраты, связанные с производством эксплуатационно-ремонтных работ, а также удобство и экономичность обслуживания сооружений.

2.3.26. На территориях электростанций кабельные линии должны прокладываться в туннелях, коробах, каналах, блоках, по эстакадам и в галереях. Прокладка силовых кабелей в траншеях допускается только к удаленным вспомогательным объектам (склады топлива, мастерские) при количестве не более шести. На территориях электростанций общей мощностью до 25 МВт допускается также прокладка кабелей в траншеях.

2.3.27. На территориях промышленных предприятий кабельные линии должны прокладываться в земле (в траншеях), туннелях, блоках, каналах, по эстакадам, в галереях и по стенам зданий.

2.3.28. На территориях подстанций и распределительных устройств кабельные линии должны прокладываться в туннелях, коробах, каналах, трубах, в земле (в траншеях), наземных железобетонных лотках, по эстакадам и в галереях.

2.3.29. В городах и поселках одиночные кабельные линии следует, как правило, прокладывать в земле (в траншеях) по непроезжей части улиц (под тротуарами), по дворам и техническим полосам в виде газонов.

2.3.30. По улицам и площадям, насыщенным подземными коммуникациями, прокладку кабельных линий в количестве 10 и более в потоке рекомендуется производить в коллекторах и кабельных туннелях. При пересечении улиц и площадей с усовершенствованными покрытиями и с интенсивным движением транспорта кабельные линии должны прокладываться в блоках или трубах.

2.3.31. При сооружении кабельных линий в районах многолетней мерзлоты следует учитывать физические явления, связанные с природой многолетней мерзлоты: пучинистый грунт, морозобойные трещины, оползни и т.п. В зависимости от местных условий кабели могут прокладываться в земле (в траншеях) ниже деятельного слоя, в деятельном слое в сухих, хорошо дренирующих грунтах, в искусственных насыпях из крупноскелетных сухих привозных грунтов, в лотках по поверхности земли, на эстакадах. Рекомендуется совместная прокладка кабелей с трубопроводами теплофикации, водопровода, канализации и т.п. в специальных сооружениях (коллекторах).

2.3.32. Осуществление разных видов прокладок кабелей в районах многолетней мерзлоты должно производиться с учетом следующего:

1. Для прокладки кабелей в земляных траншеях наиболее пригодными грунтами являются дренирующие грунты (скальные, галечные, гравийные, щебенистые и крупнопесчаные); пучинистые и просадочные грунты непригодны для прокладки в них кабельных линий. Прокладку кабелей непосредственно в грунте допускается осуществлять при числе кабелей не более четырех. По грунтово-мерзлотным и климатическим условиям запрещается прокладка кабелей в трубах, проложенных в земле. На пересечениях с другими кабельными линиями, дорогами и подземными коммуникациями кабели следует защищать железобетонными плитами.

Прокладка кабелей вблизи зданий не допускается. Ввод кабелей из траншеи в здание при отсутствии вентилируемого подполья должен выполняться выше нулевой отметки.

2. Прокладку кабелей в каналах допускается применять в местах, где деятельный слой состоит из непучинистых грунтов и имеет ровную поверхность с уклоном не более 0,2%, обеспечивающим сток поверхностных вод. Кабельные каналы следует выполнять из водонепроницаемого железобетона и покрывать снаружи надежной гидроизоляцией. Сверху каналы необходимо закрывать железобетонными плитами. Каналы могут выполняться заглубленными в грунт и без заглубления (поверх грунта). В последнем случае под каналом и вблизи него должна быть выполнена подушка толщиной не менее 0,5 м из сухого грунта.

2.3.33. Внутри зданий кабельные линии можно прокладывать непосредственно по конструкциям зданий (открыто и в коробах или трубах), в каналах, блоках, туннелях, трубах, проложенных в полах и перекрытиях, а также по фундаментам машин, в шахтах, кабельных этажах и двойных полах.

2.3.34. Маслонаполненные кабели могут прокладываться (при любом количестве кабелей) в туннелях и галереях и в земле (в траншеях); способ их прокладки определяется проектом.


ВЫБОР КАБЕЛЕЙ

2.3.35. Для кабельных линий, прокладываемых по трассам, проходящим в различных грунтах и условиях окружающей среды, выбор конструкций и сечений кабелей следует производить по участку с наиболее тяжелыми условиями, если длина участков с более легкими условиями не превышает строительной длины кабеля. При значительной длине отдельных участков трассы с различными условиями прокладки для каждого из них следует выбирать соответствующие конструкции и сечения кабелей.

2.3.36. Для кабельных линий, прокладываемых по трассам с различными условиями охлаждения, сечения кабелей должны выбираться по участку трассы с худшими условиями охлаждения, если длина его составляет более 10 м. Допускается для кабельных линий до 10 кВ, за исключением подводных, применение кабелей разных сечений, но не более трех при условии, что длина наименьшего отрезка составляет не менее 20 м (см. также 2.3.70).

2.3.37. Для кабельных линий, прокладываемых в земле или воде, должны применяться преимущественно бронированные кабели. Металлические оболочки этих кабелей должны иметь внешний покров для защиты от химических воздействий. Кабели с другими конструкциями внешних защитных покрытий (небронированные) должны обладать необходимой стойкостью к механическим воздействиям при прокладке во всех видах грунтов, при протяжке в блоках и трубах, а также стойкостью по отношению к тепловым и механическим воздействиям при эксплуатационно-ремонтных работах.

2.3.38. Трубопроводы кабельных маслонаполненных линий высокого давления, прокладываемые в земле или воде, должны иметь защиту от коррозии в соответствии с проектом.

2.3.39. В кабельных сооружениях и производственных помещениях при отсутствии опасности механических повреждений в эксплуатации рекомендуется прокладывать небронированные кабели, а при наличии опасности механических повреждений в эксплуатации должны применяться бронированные кабели или защита их от механических повреждений.

Вне кабельных сооружений допускается прокладка небронированных кабелей на недоступной высоте (не менее 2 м); на меньшей высоте прокладка небронированных кабелей допускается при условии защиты их от механических повреждений (коробами, угловой сталью, трубами и т.п.).

При смешанной прокладке (земля - кабельное сооружение или производственное помещение) рекомендуется применение тех же марок кабелей, что и для прокладки в земле (см. 2.3.37), но без горючих наружных защитных покровов.

2.3.40. При прокладке кабельных линий в кабельных сооружениях, а также в производственных помещениях бронированные кабели не должны иметь поверх брони, а небронированные кабели - поверх металлических оболочек защитных покровов из горючих материалов.

Для открытой прокладки не допускается применять силовые и контрольные кабели с горючей полиэтиленовой изоляцией.

Металлические оболочки кабелей и металлические поверхности, по которым они прокладываются, должны быть защищены негорючим антикоррозийным покрытием.

При прокладке в помещениях с агрессивной средой должны применяться кабели, стойкие к воздействию этой среды.

2.3.41. Для кабельных линий электростанций, распределительных устройств и подстанций, указанных в 2.3.76, рекомендуется применять кабели, бронированные стальной лентой, защищенной негорючим покрытием. На электростанциях применение кабелей с горючей полиэтиленовой изоляцией не допускается.

2.3.42. Для кабельных линий, прокладываемых в кабельных блоках и трубах, как правило, должны применяться небронированные кабели в свинцовой усиленной оболочке. На участках блоков и труб, а также ответвлений от них длиной до 50 м допускается прокладка бронированных кабелей в свинцовой или алюминиевой оболочке без наружного покрова из кабельной пряжи. Для кабельных линий, прокладываемых в трубах, допускается применение кабелей в пластмассовой или резиновой оболочке.

2.3.43. Для прокладки в почвах, содержащих вещества, разрушительно действующие на оболочки кабелей (солончаки, болота, насыпной грунт со шлаком и строительным материалом и т.п.), а также в зонах, опасных из-за воздействия электрокоррозии, должны применяться кабели со свинцовыми оболочками и усиленными защитными покровами типов Бл, Б2л или кабели с алюминиевыми оболочками и особо усиленными защитными покровами типов Бв, Бп (в сплошном влагостойком пластмассовом шланге).

2.3.44. В местах пересечения кабельными линиями болот кабели должны выбираться с учетом геологических условий, а также химических и механических воздействий.

2.3.45. Для прокладки в почвах, подверженных смещению, должны применяться кабели с проволочной броней или приниматься меры по устранению усилий, действующих на кабель при смещении почвы (укрепление грунта шпунтовыми или свайными рядами и т.п.).

2.3.46. В местах пересечения кабельными линиями ручьев, их пойм и канав должны применяться такие же кабели, как и для прокладки в земле (см. также 2.3.99).

2.3.47. Для кабельных линий, прокладываемых по железнодорожным мостам, а также по другим мостам с интенсивным движением транспорта, рекомендуется применять бронированные кабели в алюминиевой оболочке.

2.3.48. Для кабельных линий передвижных механизмов должны применяться гибкие кабели с резиновой или другой аналогичной изоляцией, выдерживающей многократные изгибы (см. также 1.7.111).

2.3.49. Для подводных кабельных линий следует применять кабели с броней из круглой проволоки, по возможности одной строительной длины. С этой целью разрешается применение одножильных кабелей.

В местах перехода кабельных линий с берега в море при наличии сильного морского прибоя, при прокладке кабеля на участках рек с сильным течением и размываемыми берегами, а также на больших глубинах (до 40 - 60 м) следует применять кабель с двойной металлической броней.

Кабели с резиновой изоляцией в поливинилхлоридной оболочке, а также кабели в алюминиевой оболочке без специальных водонепроницаемых покрытий для прокладки в воде не допускаются.

При прокладке кабельных линий через небольшие несудоходные и несплавные реки шириной (вместе с затопляемой поймой) не более 100 м, с устойчивыми руслом и дном допускается применение кабелей с ленточной броней.

2.3.50. Для кабельных маслонаполненных линий напряжением 110 - 220 кВ тип и конструкция кабелей определяются проектом.

2.3.51. При прокладке кабельных линий до 35 кВ на вертикальных и наклонных участках трассы с разностью уровней, превышающей допустимую по ГОСТ для кабелей с вязкой пропиткой, должны применяться кабели с нестекающей пропиточной массой, кабели с обедненно-пропитанной бумажной изоляцией и кабели с резиновой или пластмассовой изоляцией. Для указанных условий кабели с вязкой пропиткой допускается применять только со стопорными муфтами, размещенными по трассе, в соответствии с допустимыми разностями уровней для этих кабелей по ГОСТ.

Разность вертикальных отметок между стопорными муфтами кабельных маслонаполненных линий низкого давления определяется соответствующими техническими условиями на кабель и расчетом подпитки при предельных тепловых режимах.

2.3.52. В четырехпроводных сетях должны применяться четырехжильные кабели. Прокладка нулевых жил отдельно от фазных не допускается. Допускается применение трехжильных силовых кабелей в алюминиевой оболочке напряжением до 1 кВ с использованием их оболочки в качестве нулевого провода (четвертой жилы) в четырехпроводных сетях переменного тока (осветительных, силовых и смешанных) с глухозаземленной нейтралью, за исключением установок со взрывоопасной средой и установок, в которых при нормальных условиях эксплуатации ток в нулевом проводе составляет более 75% допустимого длительного тока фазного провода.

Использование для указанной цели свинцовых оболочек трехжильных силовых кабелей допускается лишь в реконструируемых городских электрических сетях 220/127 и 380/220 В.

2.3.53. Для кабельных линий до 35 кВ допускается применять одножильные кабели, если это приводит к значительной экономии меди или алюминия в сравнении с трехжильными или если отсутствует возможность применения кабеля необходимой строительной длины. Сечение этих кабелей должно выбираться с учетом их дополнительного нагрева токами, наводимыми в оболочках.

Должны быть также выполнены мероприятия по обеспечению равного распределения тока между параллельно включенными кабелями и безопасного прикосновения к их оболочкам, исключению нагрева находящихся в непосредственной близости металлических частей и надежному закреплению кабелей в изолирующих клицах.


ПОДПИТЫВАЮЩИЕ УСТРОЙСТВА И СИГНАЛИЗАЦИЯ

ДАВЛЕНИЯ МАСЛА КАБЕЛЬНЫХ МАСЛОНАПОЛНЕННЫХ ЛИНИЙ

2.3.54. Маслоподпитывающая система должна обеспечивать надежную работу линии в любых нормальных и переходных тепловых режимах.

2.3.55. Количество масла, находящегося в маслоподпитывающей системе, должно определяться с учетом расхода на подпитку кабеля. Кроме того, должен быть запас масла для аварийного ремонта и заполнения маслом наиболее протяженной секции кабельной линии.

2.3.56. Подпитывающие баки линий низкого давления рекомендуется размещать в закрытых помещениях. Небольшое количество подпитывающих баков (5 - 6) на открытых пунктах питания рекомендуется располагать в легких металлических ящиках на порталах, опорах и т.п. (при температуре окружающего воздуха не ниже минус 30 град. C). Подпитывающие баки должны быть снабжены указателями давления масла и защищены от прямого воздействия солнечного излучения.

2.3.57. Подпитывающие агрегаты линий высокого давления должны быть размещены в закрытых помещениях, имеющих температуру не ниже +10 град. C, и расположены возможно ближе к месту присоединения к кабельным линиям (см. также 2.3.131). Присоединение нескольких подпитывающих агрегатов к линии производится через масляный коллектор.

2.3.58. При параллельной прокладке нескольких кабельных маслонаполненных линий высокого давления рекомендуется подпитку маслом каждой линии производить от отдельных подпитывающих агрегатов или следует устанавливать устройство для автоматического переключения агрегатов на ту или другую линию.

2.3.59. Подпитывающие агрегаты рекомендуется обеспечивать электроэнергией от двух независимых источников питания с обязательным устройством автоматического включения резерва (АВР). Подпитывающие агрегаты должны быть отделены один от другого несгораемыми перегородками с пределом огнестойкости не менее 0,75 ч.

2.3.60. Каждая кабельная маслонаполненная линия должна иметь систему сигнализации давления масла, обеспечивающую регистрацию и передачу дежурному персоналу сигналов о понижении и повышении давления масла сверх допустимых пределов.

2.3.61. На каждой секции кабельной маслонаполненной линии низкого давления должно быть установлено по крайней мере два датчика, на линии высокого давления - датчик на каждом подпитывающем агрегате. Аварийные сигналы должны передаваться на пункт с постоянным дежурством персонала. Система сигнализации давления масла должна иметь защиту от влияния электрических полей силовых кабельных линий.

2.3.62. Подпитывающие пункты на линиях низкого давления должны быть оборудованы телефонной связью с диспетчерскими пунктами (электросети, сетевого района).

2.3.63. Маслопровод, соединяющий коллектор подпитывающего агрегата с кабельной маслонаполненной линией высокого давления, должен прокладываться в помещениях с положительной температурой. Допускается прокладка его в утепленных траншеях, лотках, каналах и в земле ниже зоны промерзания при условии обеспечения положительной температуры окружающей среды.

2.3.64. Вибрация в помещении щита с приборами для автоматического управления подпитывающим агрегатом не должна превышать допустимых пределов.


СОЕДИНЕНИЯ И ЗАДЕЛКИ КАБЕЛЕЙ

2.3.65. При соединении и оконцевании силовых кабелей следует применять конструкции муфт, соответствующие условиям их работы и окружающей среды. Соединения и заделки на кабельных линиях должны быть выполнены так, чтобы кабели были защищены от проникновения в них влаги и других вреднодействующих веществ из окружающей среды и чтобы соединения и заделки выдерживали испытательные напряжения для кабельной линии и соответствовали требованиям ГОСТ.

2.3.66. Для кабельных линий до 35 кВ концевые и соединительные муфты должны применяться в соответствии с действующей технической документацией на муфты, утвержденной в установленном порядке.

2.3.67. Для соединительных и стопорных муфт кабельных маслонаполненных линий низкого давления необходимо применять только латунные или медные муфты.

Длина секций и места установки стопорных муфт на кабельных маслонаполненных линиях низкого давления определяются с учетом подпитки линий маслом в нормальном и переходных тепловых режимах.

Стопорные и полустопорные муфты на кабельных маслонаполненных линиях должны размещаться в кабельных колодцах; соединительные муфты при прокладке кабелей в земле рекомендуется размещать в камерах, подлежащих последующей засыпке просеянной землей или песком.

В районах с электрифицированным транспортом (метрополитен, трамваи, железные дороги) или агрессивными по отношению к металлическим оболочкам и муфтам кабельных линий почвами соединительные муфты должны быть доступны для контроля.

2.3.68. На кабельных линиях, выполняемых кабелями с нормально пропитанной бумажной изоляцией и кабелями, пропитанными нестекающей массой, соединения кабелей должны производиться при помощи стопорно-переходных муфт, если уровень прокладки кабелей с нормально пропитанной изоляцией выше уровня прокладки кабелей, пропитанных нестекающей массой (см. также 2.3.51).

2.3.69. На кабельных линиях выше 1 кВ, выполняемых гибкими кабелями с резиновой изоляцией в резиновом шланге, соединения кабелей должны производиться горячим вулканизированием с покрытием противосыростным лаком.

2.3.70. Число соединительных муфт на 1 км вновь строящихся кабельных линий должно быть не более: для трехжильных кабелей 1 - 10 кВ сечением до 3 x 95 кв. мм 4 шт.; для трехжильных кабелей 1 - 10 кВ сечениями 3 x 120 - 3 x 240 кв. мм 5 шт.; для трехфазных кабелей 20 - 35 кВ 6 шт.; для одножильных кабелей 2 шт.

Для кабельных линий 110 - 220 кВ число соединительных муфт определяется проектом.

Использование маломерных отрезков кабелей для сооружения протяженных кабельных линий не допускается.


ЗАЗЕМЛЕНИЕ

2.3.71. Кабели с металлическими оболочками или броней, а также кабельные конструкции, на которых прокладываются кабели, должны быть заземлены или занулены в соответствии с требованиями, приведенными в гл. 1.7.

2.3.72. При заземлении или занулении металлических оболочек силовых кабелей оболочка и броня должны быть соединены гибким медным проводом между собой и с корпусами муфт (концевых, соединительных и др.). На кабелях 6 кВ и выше с алюминиевыми оболочками заземление оболочки и брони должно выполняться отдельными проводниками.

Применять заземляющие или нулевые защитные проводники с проводимостью, большей чем проводимость оболочек кабелей, не требуется, однако сечение во всех случаях должно быть не менее 6 кв. мм.

Сечения заземляющих проводников контрольных кабелей следует выбирать в соответствии с требованиями 1.7.76 - 1.7.78.

Если на опоре конструкции установлены наружная концевая муфта и комплект разрядников, то броня, металлическая оболочка и муфта должны быть присоединены к заземляющему устройству разрядников. Использование в качестве заземляющего устройства только металлических оболочек кабелей в этом случае не допускается.

Эстакады и галереи должны быть оборудованы молниезащитой согласно РД 34.21.122-87 "Инструкция по устройству молниезащиты зданий и сооружений" Минэнерго СССР.

2.3.73. На кабельных маслонаполненных линиях низкого давления заземляются концевые, соединительные и стопорные муфты.

На кабелях с алюминиевыми оболочками подпитывающие устройства должны подсоединяться к линиям через изолирующие вставки, а корпуса концевых муфт должны быть изолированы от алюминиевых оболочек кабелей. Указанное требование не распространяется на кабельные линии с непосредственным вводом в трансформаторы.

При применении для кабельных маслонаполненных линий низкого давления бронированных кабелей в каждом колодце броня кабеля с обеих сторон муфты должна быть соединена сваркой и заземлена.

2.3.74. Стальной трубопровод маслонаполненных кабельных линий высокого давления, проложенных в земле, должен быть заземлен во всех колодцах и по концам, а проложенных в кабельных сооружениях - по концам и в промежуточных точках, определяемых расчетами в проекте.

При необходимости активной защиты стального трубопровода от коррозии заземление его выполняется в соответствии с требованиями этой защиты, при этом должна быть обеспечена возможность контроля электрического сопротивления антикоррозийного покрытия.

2.3.75. При переходе кабельной линии в воздушную (ВЛ) и при отсутствии у опоры ВЛ заземляющего устройства кабельные муфты (мачтовые) допускается заземлять присоединением металлической оболочки кабеля, если кабельная муфта на другом конце кабеля присоединена к заземляющему устройству или сопротивление заземления кабельной оболочки соответствует требованиям гл. 1.7.


СПЕЦИАЛЬНЫЕ ТРЕБОВАНИЯ К КАБЕЛЬНОМУ ХОЗЯЙСТВУ

ЭЛЕКТРОСТАНЦИЙ, ПОДСТАНЦИЙ И РАСПРЕДЕЛИТЕЛЬНЫХ УСТРОЙСТВ

2.3.76. Требования, приведенные в 2.3.77 - 2.3.82, распространяются на кабельные хозяйства тепловых и гидроэлектростанций мощностью 25 МВт и более, распределительных устройств и подстанций напряжением 220 - 500 кВ, а также распределительных устройств и подстанций, имеющих особое значение в энергосистеме (см. также 2.3.113).

2.3.77. Главная схема электрических соединений, схема собственных нужд и схема оперативного тока, управление оборудованием и компоновка оборудования и кабельного хозяйства электростанции или подстанции должны выполняться таким образом, чтобы при возникновении пожаров в кабельном хозяйстве или вне его были исключены нарушения работы более чем одного блока электростанции, одновременная потеря взаимно резервирующих присоединений распределительных устройств и подстанций, а также выход из работы систем обнаружения и тушения пожаров.

2.3.78. Для основных кабельных потоков электростанций должны предусматриваться кабельные сооружения (этажи, туннели, шахты и др.), изолированные от технологического оборудования и исключающие доступ к кабелям посторонних лиц.

При размещении потоков кабелей на электростанциях трассы кабельных линий должны выбираться с учетом:

предотвращения перегрева кабелей от нагретых поверхностей технологического оборудования;

предотвращения повреждений кабелей при выхлопах (возгораниях и взрывах) пыли через предохранительные устройства пылесистем;

недопущения прокладки транзитных кабелей в технологических туннелях гидрозолоудаления, помещениях химводоочистки, а также в местах, где располагаются трубопроводы с химически агрессивными жидкостями.

2.3.79. Взаимно резервирующие ответственные кабельные линии (силовые, оперативного тока, средств связи, управления, сигнализации, систем пожаротушения и т.п.) должны прокладываться так, чтобы при пожарах была исключена возможность одновременной потери взаимно резервирующих кабельных линий. На участках кабельного хозяйства, где возникновение аварии угрожает ее большим развитием, кабельные потоки следует делить на изолированные одна от другой группы. Распределение кабелей по группам принимается в зависимости от местных условий.

2.3.80. В пределах одного энергоблока разрешается выполнение кабельных сооружений с пределом огнестойкости 0,25 ч. При этом технологическое оборудование, которое может служить источником пожара (баки с маслом, маслостанции и т.п.), должно иметь ограждения с пределом огнестойкости не менее 0,75 ч, исключающие возможность загорания кабелей при возникновении пожара на этом оборудовании.

В пределах одного энергоблока электростанции разрешается прокладка кабелей вне специальных кабельных сооружений при условии надежной их защиты от механических повреждений и заноса пылью, от искр и огня при производстве ремонта технологического оборудования, обеспечения нормальных температурных условий для кабельных линий и удобства их обслуживания.

Для обеспечения доступа к кабелям при расположении их на высоте 5 м и более должны сооружаться специальные площадки и проходы.

Для одиночных кабелей и небольших групп кабелей (до 20) эксплуатационные площадки могут не сооружаться, но при этом должна быть обеспечена возможность быстрой замены и ремонта кабелей в условиях эксплуатации.

При прокладке кабелей в пределах одного энергоблока вне специальных кабельных сооружений должно обеспечиваться по возможности разделение их на отдельные группы, проходящие по различным трассам.

2.3.81. Кабельные этажи и туннели, в которых размещаются кабели различных энергоблоков электростанции, включая кабельные этажи и туннели под блочными щитами управления, должны быть разделены поблочно и отделены от других помещений, кабельных этажей, туннелей, шахт, коробов и каналов несгораемыми перегородками и перекрытиями с пределом огнестойкости не менее 0,75 ч, в том числе в местах прохода кабелей.

В местах предполагаемого прохода кабелей через перегородки и перекрытия в целях обеспечения возможности замены и дополнительной прокладки кабелей должна предусматриваться перегородка из несгораемого, легко пробиваемого материала с пределом огнестойкости не менее 0,75 ч.

В протяженных кабельных сооружениях тепловых электростанций должны предусматриваться аварийные выходы, расположенные, как правило, не реже чем через 50 м.

Кабельные хозяйства электростанций должны быть отделены от отходящих сетевых кабельных туннелей и коллекторов несгораемыми перегородками с пределом огнестойкости не менее 0,75 ч.

2.3.82. Места входа кабелей в помещения закрытых распределительных устройств и в помещения щитов управления и защиты открытых распределительных устройств должны иметь перегородки с пределом огнестойкости не менее 0,75 ч.

Места входа кабелей на блочные щиты управления электростанцией должны быть закрыты перегородками с пределом огнестойкости не менее 0,75 ч.

Кабельные шахты должны быть отделены от кабельных туннелей, этажей и других кабельных сооружений несгораемыми перегородками с пределом огнестойкости не менее 0,75 ч и иметь перекрытия вверху и внизу. Протяженные шахты при проходе через перекрытия, но не реже чем через 20 м должны делиться на отсеки несгораемыми перегородками с пределом огнестойкости не менее 0,75 ч.

Проходные кабельные шахты должны иметь входные двери и быть оборудованы лестницами или специальными скобами.


ПРОКЛАДКА КАБЕЛЬНЫХ ЛИНИЙ В ЗЕМЛЕ

2.3.83. При прокладке кабельных линий непосредственно в земле кабели должны прокладываться в траншеях и иметь снизу подсыпку, а сверху засыпку слоем мелкой земли, не содержащей камней, строительного мусора и шлака.

Кабели на всем протяжении должны быть защищены от механических повреждений путем покрытия при напряжении 35 кВ и выше железобетонными плитами толщиной не менее 50 мм; при напряжении ниже 35 кВ - плитами или глиняным обыкновенным кирпичом в один слой поперек трассы кабелей; при рытье траншеи землеройным механизмом с шириной фрезы менее 250 мм, а также для одного кабеля - вдоль трассы кабельной линии. Применение силикатного, а также глиняного пустотелого или дырчатого кирпича не допускается.

При прокладке на глубине 1 - 1,2 м кабели 20 кВ и ниже (кроме кабелей городских электросетей) допускается не защищать от механических повреждений.

Кабели до 1 кВ должны иметь такую защиту лишь на участках, где вероятны механические повреждения (например, в местах частых раскопок). Асфальтовые покрытия улиц и т.п. рассматриваются как места, где разрытия производятся в редких случаях. Для кабельных линий до 20 кВ, кроме линий выше 1 кВ, питающих электроприемники I категории <*>, допускается в траншеях с количеством кабельных линий не более двух применять вместо кирпича сигнальные пластмассовые ленты, удовлетворяющие техническим требованиям, утвержденным Минэнерго СССР. Не допускается применение сигнальных лент в местах пересечений кабельных линий с инженерными коммуникациями и над кабельными муфтами на расстоянии по 2 м в каждую сторону от пересекаемой коммуникации или муфты, а также на подходах линий к распределительным устройствам и подстанциям в радиусе 5 м.

--------------------------------

<*> По местным условиям, при согласии владельца линий, допускается расширение области применения сигнальных лент.

Сигнальная лента должна укладываться в траншее над кабелями на расстоянии 250 мм от их наружных покровов. При расположении в траншее одного кабеля лента должна укладываться по оси кабеля, при большем количестве кабелей - края ленты должны выступать за крайние кабели не менее чем на 50 мм. При укладке по ширине траншеи более одной ленты - смежные ленты должны прокладываться с нахлестом шириной не менее 50 мм.

При применении сигнальной ленты прокладка кабелей в траншее с устройством подушки для кабелей, присыпка кабелей первым слоем земли и укладка ленты, включая присыпку ленты слоем земли по всей длине, должны производиться в присутствии представителя электромонтажной организации и владельца электросетей.

2.3.84. Глубина заложения кабельных линий от планировочной отметки должна быть не менее: линий до 20 кВ - 0,7 м; 35 кВ - 1 м; при пересечении улиц и площадей независимо от напряжения - 1 м.

Кабельные маслонаполненные линии 110 - 220 кВ должны иметь глубину заложения от планировочной отметки не менее 1,5 м.

Допускается уменьшение глубины до 0,5 м на участках длиной до 5 м при вводе линий в здания, а также в местах пересечения их с подземными сооружениями при условии защиты кабелей от механических повреждений (например, прокладка в трубах).

Прокладка кабельных линий 6 - 10 кВ по пахотным землям должна производиться на глубине не менее 1 м, при этом полоса земли над трассой может быть занята под посевы.

2.3.85. Расстояние в свету от кабеля, проложенного непосредственно в земле, до фундаментов зданий и сооружений должно быть не менее 0,6 м. Прокладка кабелей непосредственно в земле под фундаментами зданий и сооружений не допускается. При прокладке транзитных кабелей в подвалах и технических подпольях жилых и общественных зданий следует руководствоваться СНиП Госстроя России.

2.3.86. При параллельной прокладке кабельных линий расстояние по горизонтали в свету между кабелями должно быть не менее:

1) 100 мм между силовыми кабелями до 10 кВ, а также между ними и контрольными кабелями;

2) 250 мм между кабелями 20 - 35 кВ и между ними и другими кабелями;

3) 500 мм <*> между кабелями, эксплуатируемыми различными организациями, а также между силовыми кабелями и кабелями связи;

4) 500 мм между маслонаполненными кабелями 110 - 220 кВ и другими кабелями; при этом кабельные маслонаполненные линии низкого давления отделяются одна от другой и от других кабелей железобетонными плитами, поставленными на ребро; кроме того, следует производить расчет электромагнитного влияния на кабели связи.

--------------------------------

<*> Согласовано с Министерством связи.

Допускается в случаях необходимости по согласованию между эксплуатирующими организациями с учетом местных условий уменьшение расстояний, указанных в п. 2 и 3, до 100 мм, а между силовыми кабелями до 10 кВ и кабелями связи, кроме кабелей с цепями, уплотненными высокочастотными системами телефонной связи, до 250 мм при условии защиты кабелей от повреждений, могущих возникнуть при КЗ в одном из кабелей (прокладка в трубах, установка несгораемых перегородок и т.п.).

Расстояние между контрольными кабелями не нормируется.

2.3.87. При прокладке кабельных линий в зоне насаждений расстояние от кабелей до стволов деревьев должно быть, как правило, не менее 2 м. Допускается по согласованию с организацией, в ведении которой находятся зеленые насаждения, уменьшение этого расстояния при условии прокладки кабелей в трубах, проложенных путем подкопки.

При прокладке кабелей в пределах зеленой зоны с кустарниковыми посадками указанные расстояния допускается уменьшить до 0,75 м.

2.3.88. При параллельной прокладке расстояние по горизонтали в свету от кабельных линий напряжением до 35 кВ и маслонаполненных кабельных линий до трубопроводов, водопровода, канализации и дренажа должно быть не менее 1 м; до газопроводов низкого (0,0049 МПа), среднего (0,294 МПа) и высокого давления (более 0,294 до 0,588 МПа) - не менее 1 м; до газопроводов высокого давления (более 0,588 до 1,176 МПа) - не менее 2 м; до теплопроводов - см. 2.3.89.

В стесненных условиях допускается уменьшение указанных расстояний для кабельных линий до 35 кВ, за исключением расстояний до трубопроводов с горючими жидкостями и газами, до 0,5 м без специальной защиты кабелей и до 0,25 м при прокладке кабелей в трубах. Для маслонаполненных кабельных линий 110 - 220 кВ на участке сближения длиной не более 50 м допускается уменьшение расстояния по горизонтали в свету до трубопроводов, за исключением трубопроводов с горючими жидкостями и газами, до 0,5 м при условии устройства между маслонаполненными кабелями и трубопроводом защитной стенки, исключающей возможность механических повреждений. Параллельная прокладка кабелей над и под трубопроводами не допускается.

2.3.89. При прокладке кабельной линии параллельно с теплопроводом расстояние в свету между кабелем и стенкой канала теплопровода должно быть не менее 2 м или теплопровод на всем участке сближения с кабельной линией должен иметь такую теплоизоляцию, чтобы дополнительный нагрев земли теплопроводом в месте прохождения кабелей в любое время года не превышал 10 град. C для кабельных линий до 10 кВ и 5 град. C - для линий 20 - 220 кВ.

2.3.90. При прокладке кабельной линии параллельно с железными дорогами кабели должны прокладываться, как правило, вне зоны отчуждения дороги. Прокладка кабелей в пределах зоны отчуждения допускается только по согласованию с организациями Министерства путей сообщения, при этом расстояние от кабеля до оси пути железной дороги должно быть не менее 3,25 м, а для электрифицированной дороги - не менее 10,75 м. В стесненных условиях допускается уменьшение указанных расстояний, при этом кабели на всем участке сближения должны прокладываться в блоках или трубах.

При электрифицированных дорогах на постоянном токе блоки или трубы должны быть изолирующими (асбестоцементные, пропитанные гудроном или битумом и др.) <*>.

--------------------------------

<*> Согласовано с Министерством путей сообщения.

2.3.91. При прокладке кабельной линии параллельно с трамвайными путями расстояние от кабеля до оси трамвайного пути должно быть не менее 2,75 м. В стесненных условиях допускается уменьшение этого расстояния при условии, что кабели на всем участке сближения будут проложены в изолирующих блоках или трубах, указанных в 2.3.90.

2.3.92. При прокладке кабельной линии параллельно с автомобильными дорогами категорий I и II (см. 2.5.145) кабели должны прокладываться с внешней стороны кювета или подошвы насыпи на расстоянии не менее 1 м от бровки или не менее 1,5 м от бордюрного камня. Уменьшение указанного расстояния допускается в каждом отдельном случае по согласованию с соответствующими управлениями дорог.

2.3.93. При прокладке кабельной линии параллельно с ВЛ 110 кВ и выше расстояние от кабеля до вертикальной плоскости, проходящей через крайний провод линии, должно быть не менее 10 м.

Расстояние в свету от кабельной линии до заземленных частей и заземлителей опор ВЛ выше 1 кВ должно быть не менее 5 м при напряжении до 35 кВ, 10 м при напряжении 110 кВ и выше. В стесненных условиях расстояние от кабельных линий до подземных частей и заземлителей отдельных опор ВЛ выше 1 кВ допускается не менее 2 м; при этом расстояние от кабеля до вертикальной плоскости, проходящей через провод ВЛ, не нормируется.

Расстояние в свету от кабельной линии до опоры ВЛ до 1 кВ должно быть не менее 1 м, а при прокладке кабеля на участке сближения в изолирующей трубе - 0,5 м.

На территориях электростанций и подстанций в стесненных условиях допускается прокладывать кабельные линии на расстояниях не менее 0,5 м от подземной части опор воздушных связей (токопроводов) и ВЛ выше 1 кВ, если заземляющие устройства этих опор присоединены к контуру заземления подстанций.

2.3.94 <*>. При пересечении кабельными линиями других кабелей они должны быть разделены слоем земли толщиной не менее 0,5 м; это расстояние в стесненных условиях для кабелей до 35 кВ может быть уменьшено до 0,15 м при условии разделения кабелей на всем участке пересечения плюс по 1 м в каждую сторону плитами или трубами из бетона или другого равнопрочного материала; при этом кабели связи должны быть расположены выше силовых кабелей.

--------------------------------

<*> Согласовано с Министерством связи.

2.3.95. При пересечении кабельными линиями трубопроводов, в том числе нефте- и газопроводов, расстояние между кабелями и трубопроводом должно быть не менее 0,5 м. Допускается уменьшение этого расстояния до 0,25 м при условии прокладки кабеля на участке пересечения плюс не менее чем по 2 м в каждую сторону в трубах.

При пересечении кабельной маслонаполненной линией трубопроводов расстояние между ними в свету должно быть не менее 1 м. Для стесненных условий допускается принимать расстояние не менее 0,25 м, но при условии размещения кабелей в трубах или железобетонных лотках с крышкой.

2.3.96. При пересечении кабельными линиями до 35 кВ теплопроводов расстояние между кабелями и перекрытием теплопровода в свету должно быть не менее 0,5 м, а в стесненных условиях - не менее 0,25 м. При этом теплопровод на участке пересечения плюс по 2 м в каждую сторону от крайних кабелей должен иметь такую теплоизоляцию, чтобы температура земли не повышалась более чем на 10 град. C по отношению к высшей летней температуре и на 15 град. C по отношению к низшей зимней.

В случаях, когда указанные условия не могут быть соблюдены, допускается выполнение одного из следующих мероприятий: заглубление кабелей до 0,5 м вместо 0,7 м (см. 2.3.84); применение кабельной вставки большего сечения; прокладка кабелей под теплопроводом в трубах на расстоянии от него не менее 0,5 м, при этом трубы должны быть уложены таким образом, чтобы замена кабелей могла быть выполнена без производства земляных работ (например, ввод концов труб в камеры).

При пересечении кабельной маслонаполненной линией теплопровода расстояние между кабелями и перекрытием теплопровода должно быть не менее 1 м, а в стесненных условиях - не менее 0,5 м. При этом теплопровод на участке пересечения плюс по 3 м в каждую сторону от крайних кабелей должен иметь такую теплоизоляцию, чтобы температура земли не повышалась более чем на 5 град. C в любое время года.

2.3.97. При пересечении кабельными линиями железных и автомобильных дорог кабели должны прокладываться в туннелях, блоках или трубах по всей ширине зоны отчуждения на глубине не менее 1 м от полотна дороги и не менее 0,5 м от дна водоотводных канав. При отсутствии зоны отчуждения указанные условия прокладки должны выполняться только на участке пересечения плюс по 2 м по обе стороны от полотна дороги.

При пересечении кабельными линиями электрифицированных и подлежащих электрификации на постоянном токе <*> железных дорог блоки и трубы должны быть изолирующими (см. 2.3.90). Место пересечения должно находиться на расстоянии не менее 10 м от стрелок, крестовин и мест присоединения к рельсам отсасывающих кабелей. Пересечение кабелей с путями электрифицированного рельсового транспорта должно производиться под углом 75 - 90 град. к оси пути.

--------------------------------

<*> Согласовано с Министерством путей сообщения.

Концы блоков и труб должны быть утоплены джутовыми плетеными шнурами, обмазанными водонепроницаемой (мятой) глиной на глубину не менее 300 мм.

При пересечении тупиковых дорог промышленного назначения с малой интенсивностью движения, а также специальных путей (например, на слипах и т.п.) кабели, как правило, должны прокладываться непосредственно в земле.

При пересечении трассы кабельных линий вновь сооружаемой железной неэлектрифицированной дорогой или автомобильной дорогой перекладки действующих кабельных линий не требуется. В месте пересечения должны быть заложены на случай ремонта кабелей в необходимом количестве резервные блоки или трубы с плотно заделанными торцами.

В случае перехода кабельной линии в воздушную кабель должен выходить на поверхность на расстоянии не менее 3,5 м от подошвы насыпи или от кромки полотна.

2.3.98. При пересечении кабельными линиями трамвайных путей кабели должны прокладываться в изолирующих блоках или трубах (см. 2.3.90). Пересечение должно выполняться на расстоянии не менее 3 м от стрелок, крестовин и мест присоединения к рельсам отсасывающих кабелей.

2.3.99. При пересечении кабельными линиями въездов для автотранспорта во дворы, гаражи и т.д. прокладка кабелей должна производиться в трубах. Таким же способом должны быть защищены кабели в местах пересечения ручьев и канав.

2.3.100. При установке на кабельных линиях кабельных муфт расстояние в свету между корпусом кабельной муфты и ближайшим кабелем должно быть не менее 250 мм.

При прокладке кабельных линий на крутонаклонных трассах установка на них кабельных муфт не рекомендуется. При необходимости установки на таких участках кабельных муфт под ними должны выполняться горизонтальные площадки.

Для обеспечения возможности перемонтажа муфт в случае их повреждения на кабельной линии требуется укладывать кабель с обеих сторон муфт с запасом.

2.3.101. При наличии по трассе кабельной линии блуждающих токов опасных величин необходимо:

1. Изменить трассу кабельной линии, с тем чтобы обойти опасные зоны.

2. При невозможности изменить трассу: предусмотреть меры по максимальному снижению уровней блуждающих токов; применить кабели с повышенной стойкостью к воздействию коррозии; осуществить активную защиту кабелей от воздействия электрокоррозии.

При прокладках кабелей в агрессивных грунтах и зонах с наличием блуждающих токов недопустимых значений должна применяться катодная поляризация (установка электродренажей, протекторов, катодная защита). При любых способах подключения электродренажных устройств должны соблюдаться нормы разностей потенциалов на участках отсасывания, предусмотренные СНиП 3.04.03-85 "Защита строительных конструкций и сооружений от коррозии" Госстроя России. Применять катодную защиту внешним током на кабелях, проложенных в солончаковых грунтах или засоленных водоемах, не рекомендуется.

Необходимость защиты кабельных линий от коррозии должна определяться по совокупным данным электрических измерений и химических анализов проб грунта. Защита кабельных линий от коррозии не должна создавать условий, опасных для работы смежных подземных сооружений. Запроектированные мероприятия по защите от коррозии должны быть осуществлены до ввода новой кабельной линии в эксплуатацию. При наличии в земле блуждающих токов необходимо устанавливать на кабельных линиях контрольные пункты в местах и на расстояниях, позволяющих определять границы опасных зон, что необходимо для последующего рационального выбора и размещения защитных средств.

Для контроля потенциалов на кабельных линиях допускается использовать места выходов кабелей на трансформаторные подстанции, распределительные пункты и т.д.


ПРОКЛАДКА КАБЕЛЬНЫХ ЛИНИЙ В КАБЕЛЬНЫХ БЛОКАХ,

ТРУБАХ И ЖЕЛЕЗОБЕТОННЫХ ЛОТКАХ

2.3.102. Для изготовления кабельных блоков, а также для прокладки кабелей в трубах допускается применять стальные, чугунные, асбестоцементные, бетонные, керамические и тому подобные трубы. При выборе материала для блоков и труб следует учитывать уровень грунтовых вод и их агрессивность, а также наличие блуждающих токов.

Маслонаполненные однофазные кабели низкого давления необходимо прокладывать только в асбестоцементных и других трубах из немагнитного материала, при этом каждая фаза должна прокладываться в отдельной трубе.

2.3.103. Допустимое количество каналов в блоках, расстояния между ними и их размер должны приниматься согласно 1.3.20.

2.3.104. Каждый кабельный блок должен иметь до 15% резервных каналов, но не менее одного канала.

2.3.105. Глубина заложения в земле кабельных блоков и труб должна приниматься по местным условиям, но быть не менее расстояний, приведенных в 2.3.84, считая до верхнего кабеля. Глубина заложения кабельных блоков и труб на закрытых территориях и в полах производственных помещений не нормируется.

2.3.106. Кабельные блоки должны иметь уклон не менее 0,2% в сторону колодцев. Такой же уклон необходимо соблюдать и при прокладке труб для кабелей.

2.3.107. При прокладке труб для кабельных линий непосредственно в земле наименьшие расстояния в свету между трубами и между ними и другими кабелями и сооружениями должны приниматься, как для кабелей, проложенных без труб (см. 2.3.86).

При прокладке кабельных линий в трубах в полу помещения расстояния между ними принимаются, как для прокладки в земле.

2.3.108. В местах, где изменяется направление трассы кабельных линий, проложенных в блоках, и в местах перехода кабелей и кабельных блоков в землю должны сооружаться кабельные колодцы, обеспечивающие удобную протяжку кабелей и удаление их из блоков. Такие колодцы должны сооружаться также и на прямолинейных участках трассы на расстоянии один от другого, определяемом предельно допустимым тяжением кабелей. При числе кабелей до 10 и напряжении не выше 35 кВ переход кабелей из блоков в землю допускается осуществлять без кабельных колодцев. При этом места выхода кабелей из блоков должны быть заделаны водонепроницаемым материалом.

2.3.109. Переход кабельных линий из блоков и труб в здания, туннели, подвалы и т.п. должен осуществляться одним из следующих способов: непосредственным вводом в них блоков и труб, сооружением колодцев или приямков внутри зданий либо камер у их наружных стен.

Должны быть предусмотрены меры, исключающие проникновение через трубы или проемы воды и мелких животных из траншей в здания, туннели и т.п.

2.3.110. Каналы кабельных блоков, трубы, выход из них, а также их соединения должны иметь обработанную и очищенную поверхность для предотвращения механических повреждений оболочек кабелей при протяжке. На выходах кабелей из блоков в кабельные сооружения и камеры должны предусматриваться меры, предотвращающие повреждение оболочек от истирания и растрескивания (применение эластичных подкладок, соблюдение необходимых радиусов изгиба и др.).

2.3.111. При высоком уровне грунтовых вод на территории ОРУ следует отдавать предпочтение надземным способам прокладки кабелей (в лотках или коробках). Надземные лотки и плиты для их покрытия должны быть выполнены из железобетона. Лотки должны быть уложены на специальных бетонных подкладках с уклоном не менее 0,2% по спланированной трассе таким образом, чтобы не препятствовать стоку ливневых вод. При наличии в днищах надземных лотков проемов, обеспечивающих выпуск ливневых вод, создавать уклон не требуется.

При применении кабельных лотков для прокладки кабелей должны обеспечиваться проезд по территории ОРУ и подъезд к оборудованию машин и механизмов, необходимых для выполнения ремонтных и эксплуатационных работ. Для этой цели должны быть устроены переезды через лотки при помощи железобетонных плит с учетом нагрузки от проходящего транспорта, с сохранением расположения лотков на одном уровне. При применении кабельных лотков не допускается прокладка кабелей под дорогами и переездами в трубах, каналах и траншеях, расположенных ниже лотков.

Выход кабелей из лотков к шкафам управления и защиты должен выполняться в трубах, не заглубляемых в землю. Прокладка кабельных перемычек в пределах одной ячейки ОРУ допускается в траншее, причем применение в этом случае труб для защиты кабелей при подводке их к шкафам управления и релейной защиты не рекомендуется. Защита кабелей от механических повреждений должна выполняться другими способами (с применением уголка, швеллера и др.).


ПРОКЛАДКА КАБЕЛЬНЫХ ЛИНИЙ В КАБЕЛЬНЫХ СООРУЖЕНИЯХ

2.3.112. Кабельные сооружения всех видов должны выполняться с учетом возможности дополнительной прокладки кабелей в размере 15% количества кабелей, предусмотренного проектом (замена кабелей в процессе монтажа, дополнительная прокладка в последующей эксплуатации и др.).

2.3.113. Кабельные этажи, туннели, галереи, эстакады и шахты должны быть отделены от других помещений и соседних кабельных сооружений несгораемыми перегородками и перекрытиями с пределом огнестойкости не менее 0,75 ч. Такими же перегородками протяженные туннели должны разделяться на отсеки длиной не более 150 м при наличии силовых и контрольных кабелей и не более 100 м при наличии маслонаполненных кабелей. Площадь каждого отсека двойного пола должна быть не более 600 кв. м.

Двери в кабельных сооружениях и перегородках с пределом огнестойкости 0,75 ч должны иметь предел огнестойкости не менее 0,75 ч в электроустановках, перечисленных в 2.3.76, и 0,6 ч в остальных электроустановках.

Выходы из кабельных сооружений должны предусматриваться наружу или в помещения с производствами категорий Г и Д. Количество и расположение выходов из кабельных сооружений должно определяться, исходя из местных условий, но их должно быть не менее двух. При длине кабельного сооружения не более 25 м допускается иметь один выход.

Двери кабельных сооружений должны быть самозакрывающимися, с уплотненными притворами. Выходные двери из кабельных сооружений должны открываться наружу и должны иметь замки, отпираемые из кабельных сооружений без ключа, а двери между отсеками должны открываться по направлению ближайшего выхода и оборудоваться устройствами, поддерживающими их в закрытом положении.

Проходные кабельные эстакады с мостиками обслуживания должны иметь входы с лестницами. Расстояние между входами должно быть не более 150 м. Расстояние от торца эстакады до входа на нее не должно превышать 25 м.

Входы должны иметь двери, предотвращающие свободный доступ на эстакады лицам, не связанным с обслуживанием кабельного хозяйства. Двери должны иметь самозапирающиеся замки, открываемые без ключа с внутренней стороны эстакады.

Расстояние между входами в кабельную галерею при прокладке в ней кабелей не выше 35 кВ должно быть не более 150 м, а при прокладке маслонаполненных кабелей - не более 120 м.

Наружные кабельные эстакады и галереи должны иметь основные несущие строительные конструкции (колонны, балки) из железобетона с пределом огнестойкости не менее 0,75 ч или из стального проката с пределом огнестойкости не менее 0,25 ч.

Несущие конструкции зданий и сооружений, которые могут опасно деформироваться или снизить механическую прочность при горении групп (потоков) кабелей, проложенных вблизи этих конструкций на наружных кабельных эстакадах и галереях, должны иметь защиту, обеспечивающую предел огнестойкости защищаемых конструкций не менее 0,75 ч.

Кабельные галереи должны делиться на отсеки несгораемыми противопожарными перегородками с пределом огнестойкости не менее 0,75 ч. Длина отсеков галерей должна быть не более 150 м при прокладке в них кабелей до 35 кВ и не более 120 м при прокладке маслонаполненных кабелей. На наружные кабельные галереи, закрытые частично, указанные требования не распространяются.

2.3.114. В туннелях и каналах должны быть выполнены мероприятия по предотвращению попадания в них технологических вод и масла, а также должен быть обеспечен отвод почвенных и ливневых вод. Полы в них должны иметь уклон не менее 0,5% в сторону водосборников или ливневой канализации. Проход из одного отсека туннеля в другой при их расположении на разных уровнях должен быть осуществлен с помощью пандуса с углом подъема не выше 15 град. Устройство ступеней между отсеками туннелей запрещается.

В кабельных каналах, сооружаемых вне помещений и расположенных выше уровня грунтовых вод, допускается земляное дно с дренирующей подсыпкой толщиной 10 - 15 см из утрамбованного гравия или песка.

В туннелях должны быть предусмотрены дренажные механизмы; при этом рекомендуется применять автоматический их пуск в зависимости от уровня воды. Пусковые аппараты и электродвигатели должны иметь исполнение, допускающее их работу в особо сырых местах.

При переходах эстакады и галереи проходного типа с одной отметки на другую должен быть выполнен пандус с уклоном не более 15 град. Как исключение, допускается устройство лестницы с уклоном 1:1.

2.3.115. Кабельные каналы и двойные полы в распределительных устройствах и помещениях должны перекрываться съемными несгораемыми плитами. В электромашинных и тому подобных помещениях каналы рекомендуется перекрывать рифленой сталью, а в помещениях щитов управления с паркетными полами - деревянными щитами с паркетом, защищенными снизу асбестом и по асбесту жестью. Перекрытие каналов и двойных полов должно быть рассчитано на передвижение по нему соответствующего оборудования.

2.3.116. Кабельные каналы вне зданий должны быть засыпаны поверх съемных плит слоем земли толщиной не менее 0,3 м. На огражденных территориях засыпка кабельных каналов землей поверх съемных плит не обязательна. Масса отдельной плиты перекрытия, снимаемой вручную, не должна превышать 70 кг. Плиты должны иметь приспособление для подъема.

2.3.117. На участках, где могут быть пролиты расплавленный металл, жидкости с высокой температурой или же вещества, разрушающе действующие на металлические оболочки кабелей, сооружение кабельных каналов не допускается. На указанных участках не допускается также устройство люков в коллекторах и туннелях.

2.3.118. Подземные туннели вне зданий должны иметь поверх перекрытия слой земли толщиной не менее 0,5 м.

2.3.119. При совместной прокладке кабелей и теплопроводов в сооружениях дополнительный нагрев воздуха теплопроводом в месте расположения кабелей в любое время года не должен превышать 5 град. C, для чего должны быть предусмотрены вентиляция и теплоизоляция на трубах.

2.3.120. В кабельных сооружениях кабели рекомендуется прокладывать целыми строительными длинами, а размещение кабелей в сооружениях должно производиться в соответствии со следующим:

1. Контрольные кабели и кабели связи следует размещать только под или только над силовыми кабелями; при этом их следует отделять перегородкой. В местах пересечения и ответвления допускается прокладка контрольных кабелей и кабелей связи над и под силовыми кабелями.

2. Контрольные кабели допускается прокладывать рядом с силовыми кабелями до 1 кВ.

3. Силовые кабели до 1 кВ рекомендуется прокладывать над кабелями выше 1 кВ; при этом их следует отделять перегородкой.

4. Различные группы кабелей: рабочие и резервные кабели выше 1 кВ генераторов, трансформаторов и т.п., питающие электроприемники I категории, рекомендуется прокладывать на разных горизонтальных уровнях и разделять перегородками.

5. Разделительные перегородки, указанные в п. 1, 3 и 4, должны быть несгораемыми с пределом огнестойкости не менее 0,25 ч.

При применении автоматического пожаротушения с использованием воздушно-механической пены или распыленной воды перегородки, указанные в п. 1, 3 и 4, допускается не устанавливать.

На наружных кабельных эстакадах и в наружных закрытых частично кабельных галереях установка разделительных перегородок, указанных в п. 1, 3 и 4, не требуется. При этом взаимно резервирующие силовые кабельные линии (за исключением линий к электроприемникам особой группы I категории) следует прокладывать с расстоянием между ними не менее 600 мм и рекомендуется располагать: на эстакадах по обе стороны пролетной несущей конструкции (балки, фермы); в галереях по разным сторонам от прохода.

2.3.121. Маслонаполненные кабели следует прокладывать, как правило, в отдельных кабельных сооружениях. Допускается их прокладка совместно с другими кабелями; при этом маслонаполненные кабели следует размещать в нижней части кабельного сооружения и отделять от других кабелей горизонтальными перегородками с пределом огнестойкости не менее 0,75 ч. Такими же перегородками следует отделять одну от другой маслонаполненные кабельные линии.

2.3.122. Необходимость применения и объем автоматических стационарных средств обнаружения и тушения пожаров в кабельных сооружениях должны определяться на основании ведомственных документов, утвержденных в установленном порядке.

В непосредственной близости от входа, люков и вентиляционных шахт (в радиусе не более 25 м) должны быть установлены пожарные краны. Для эстакад и галерей пожарные гидранты должны располагаться с таким расчетом, чтобы расстояние от любой точки оси трассы эстакады и галереи до ближайшего гидранта не превышало 100 м.

2.3.123. В кабельных сооружениях прокладку контрольных кабелей и силовых кабелей сечением 25 кв. мм и более, за исключением небронированных кабелей со свинцовой оболочкой, следует выполнять по кабельным конструкциям (консолям).

Контрольные небронированные кабели, силовые небронированные кабели со свинцовой оболочкой и небронированные силовые кабели всех исполнений сечением 16 кв. мм и менее следует прокладывать по лоткам или перегородкам (сплошным или несплошным).

Допускается прокладка кабелей по дну канала при глубине его не более 0,9 м; при этом расстояние между группой силовых кабелей выше 1 кВ и группой контрольных кабелей должно быть не менее 100 мм или эти группы кабелей должны быть разделены несгораемой перегородкой с пределом огнестойкости не менее 0,25 ч.

Расстояния между отдельными кабелями приведены в табл. 2.3.1.


Таблица 2.3.1

НАИМЕНЬШЕЕ РАССТОЯНИЕ ДЛЯ КАБЕЛЬНЫХ СООРУЖЕНИЙ

Расстояние

Наименьшие размеры, мм, при прокладке

в туннелях, галереях, кабельных этажах и на эстакадах

в кабельных каналах и двойных полах

Высота в свету

1800

Не ограничивается, но не более 1200 мм

По горизонтали в свету между конструкциями при двустороннем их расположении (ширина прохода)

1000

300 при глубине до 0,6 м; 450 при глубине более 0,6 до 0,9 м; 600 при глубине более 0,9 м

По горизонтали в свету от конструкции до стены при одностороннем расположении (ширина прохода)

900

То же

По вертикали между горизонтальными конструкциями <*>:

для силовых кабелей напряжением:

до 10 кВ

200

150

20 - 35 кВ

250

200

110 кВ и выше

300 <**>

250

для контрольных кабелей и кабелей связи, а также силовых сечением до 3 x 25 кв. мм напряжением до 1 кВ

100

Между опорными конструкциями (консолями) по длине сооружения

800 - 1000

По вертикали и горизонтали в свету между одиночными силовыми кабелями напряжением до 35 кВ <***>

Не менее диаметра кабеля

По горизонтали между контрольными кабелями и кабелями связи <***>

Не нормируется

По горизонтали в свету между кабелями напряжением 110 кВ и выше

100

Не менее диаметра кабеля

--------------------------------

<*> Полезная длина консоли должна быть не более 500 мм на прямых участках трассы.

<**> При расположении кабелей треугольником 250 мм.

<***> В том числе для кабелей, прокладываемых в кабельных шахтах.

Засыпка силовых кабелей, проложенных в каналах, песком запрещается (исключение см. в 7.3.110).

В кабельных сооружениях высота, ширина проходов и расстояние между конструкциями и кабелями должны быть не менее приведенных в табл. 2.3.1. По сравнению с приведенными в таблице расстояниями допускается местное сужение проходов до 800 мм или снижение высоты до 1,5 м на длине 1,0 м с соответствующим уменьшением расстояния между кабелями по вертикали при одностороннем и двустороннем расположении конструкций.

2.3.124. Прокладка контрольных кабелей допускается пучками на лотках и многослойно в металлических коробах при соблюдении следующих условий:

1. Наружный диаметр пучка кабелей должен быть не более 100 мм.

2. Высота слоев в одном коробе не должна превышать 150 мм.

3. В пучках и многослойно должны прокладываться только кабели с однотипными оболочками.

4. Крепление кабелей в пучках, многослойно в коробах, пучков кабелей к лоткам следует выполнять так, чтобы была предотвращена деформация оболочек кабелей под действием собственного веса и устройств крепления.

5. В целях пожарной безопасности внутри коробов должны устанавливаться огнепреградительные пояса: на вертикальных участках - на расстоянии не более 20 м, а также при проходе через перекрытие; на горизонтальных участках - при проходе через перегородки.

6. В каждом направлении кабельной трассы следует предусматривать запас емкости не менее 15% общей емкости коробов.

Прокладка силовых кабелей пучками и многослойно не допускается.

2.3.125 <*>. В местах, насыщенных подземными коммуникациями, допускается выполнение полупроходных туннелей высотой, уменьшенной по сравнению с предусмотренной в табл. 2.3.1, но не менее 1,5 м, при условии выполнения следующих требований: напряжение кабельных линий должно быть не выше 10 кВ; протяженность туннеля должна быть не более 100 м; остальные расстояния должны соответствовать приведенным в табл. 2.3.1; на концах туннеля должны быть выходы или люки.

--------------------------------

<*> Согласовано с ЦК профсоюза рабочих электростанций и электротехнической промышленности.

2.3.126. Маслонаполненные кабели низкого давления должны крепиться на металлических конструкциях таким образом, чтобы была исключена возможность образования вокруг кабелей замкнутых магнитных контуров; расстояние между местами крепления должно быть не более 1 м.

Стальные трубопроводы кабельных маслонаполненных линий высокого давления могут прокладываться на опорах или подвешиваться на подвесках; расстояние между опорами или подвесками определяется проектом линии. Кроме того, трубопроводы должны закрепляться на неподвижных опорах для предотвращения возникновения в трубопроводах температурных деформаций в условиях эксплуатации.

Воспринимаемые опорами нагрузки от веса трубопровода не должны приводить к каким-либо перемещениям или разрушениям фундаментов опор. Количество указанных опор и места их расположения определяются проектом.

Механические опоры и крепления разветвительных устройств на линиях высокого давления должны предотвращать раскачивание труб разветвлений, образование замкнутых магнитных контуров вокруг них, а в местах креплений или касаний опор должны быть предусмотрены изолирующие прокладки.

2.3.127. Высота кабельных колодцев должна быть не менее 1,8 м; высота камер не нормируется. Кабельные колодцы для соединительных, стопорных и полустопорных муфт должны иметь размеры, обеспечивающие монтаж муфт без разрытия.

Береговые колодцы на подводных переходах должны иметь размеры, обеспечивающие размещение резервных кабелей и подпитывающих аппаратов.

В полу колодца должен быть устроен приямок для сбора грунтовых и ливневых вод; должно быть также предусмотрено водоотливное устройство в соответствии с требованиями, приведенными в 2.3.114.

Кабельные колодцы должны быть снабжены металлическими лестницами.

В кабельных колодцах кабели и соединительные муфты должны быть уложены на конструкциях, лотках или перегородках.

2.3.128. Люки кабельных колодцев и туннелей должны иметь диаметр не менее 650 мм и закрываться двойными металлическими крышками, из которых нижняя должна иметь приспособление для закрывания на замок, открываемый со стороны туннеля без ключа. Крышки должны иметь приспособления для их снятия. Внутри помещений применение второй крышки не требуется.

2.3.129. На соединительных муфтах силовых кабелей напряжением 6 - 35 кВ в туннелях, кабельных этажах и каналах должны быть установлены специальные защитные кожухи для локализации пожаров и взрывов, которые могут возникнуть при электрических пробоях в муфтах.

2.3.130. Концевые муфты на кабельных маслонаполненных линиях высокого давления должны располагаться в помещениях с положительной температурой воздуха или быть оборудованы автоматическим обогревом при снижении температуры окружающего воздуха ниже +5 град. C.

2.3.131. При прокладке маслонаполненных кабелей в галереях необходимо предусмотреть отопление галерей в соответствии с техническими условиями на маслонаполненные кабели.

Помещения маслоподпитывающих агрегатов линий высокого давления должны иметь естественную вентиляцию. Подземные подпитывающие пункты допускается совмещать с кабельными колодцами; при этом колодцы должны быть оборудованы водоотливными устройствами в соответствии с 2.3.127.

2.3.132. Кабельные сооружения, за исключением эстакад, колодцев для соединительных муфт, каналов и камер, должны быть обеспечены естественной или искусственной вентиляцией, причем вентиляция каждого отсека должна быть независимой.

Расчет вентиляции кабельных сооружений определяется, исходя из перепада температур между поступающим и удаляемым воздухом не более 10 град. C. При этом должно быть предотвращено образование мешков горячего воздуха в сужениях туннелей, поворотах, обходах и т.д.

Вентиляционные устройства должны быть оборудованы заслонками (шиберами) для прекращения доступа воздуха в случае возникновения возгорания, а также для предупреждения промерзания туннеля в зимнее время. Исполнение вентиляционных устройств должно обеспечивать возможность применения автоматики прекращения доступа воздуха в сооружения.

При прокладке кабелей внутри помещений должен быть предотвращен перегрев кабелей за счет повышенной температуры окружающего воздуха и влияний технологического оборудования.

Кабельные сооружения, за исключением колодцев для соединительных муфт, каналов, камер и открытых эстакад, должны быть оборудованы электрическим освещением и сетью для питания переносных светильников и инструмента. На тепловых электростанциях сеть для питания инструмента допускается не выполнять.

2.3.133. Прокладка кабелей в коллекторах, технологических галереях и по технологическим эстакадам выполняется в соответствии с требованиями СНиП Госстроя России.

Наименьшие расстояния в свету от кабельных эстакад и галерей до зданий и сооружений должны соответствовать приведенным в табл. 2.3.2.


Таблица 2.3.2

НАИМЕНЬШЕЕ РАССТОЯНИЕ ОТ КАБЕЛЬНЫХ ЭСТАКАД

И ГАЛЕРЕЙ ДО ЗДАНИЙ И СООРУЖЕНИЙ

Сооружение

Нормируемое расстояние

Наименьшие размеры, м

При параллельном следовании, по горизонтали

Здания и сооружения с глухими стенами

От конструкции эстакады и галереи до стены здания и сооружения

Не нормируется

Здания и сооружения, имеющие стены с проемами

То же

2

Внутризаводская неэлектрифицированная железная дорога

От конструкции эстакады и галереи до габарита приближения строений

1 м для галерей и проходных эстакад; 3 м для непроходных эстакад

Внутризаводская автомобильная дорога и пожарные проезды

От конструкции эстакады и галереи до бордюрного камня, внешней бровки или подошвы кювета дороги

2

Канатная дорога

От конструкции эстакады и галереи до габарита подвижного состава

1

Надземный трубопровод

От конструкции эстакады и галереи до ближайших частей трубопровода

0,5

Воздушная линия электропередачи

От конструкции эстакады и галереи до проводов

См. 2.5.114

При пересечении, по вертикали

Внутризаводская неэлектрифицированная железная дорога

От нижней отметки эстакады и галереи до головки рельса

5,6

Внутризаводская электрифицированная железная дорога

От нижней отметки эстакады и галереи:

до головки рельса

7,1

до наивысшего провода или несущего троса контактной сети

3

Внутризаводская автомобильная дорога (пожарный проезд)

От нижней отметки эстакады и галереи до полотна автомобильной дороги (пожарного проезда)

4,5

Надземный трубопровод

От конструкции эстакады и галереи до ближайших частей трубопровода

0,5

Воздушная линия электропередачи

От конструкции эстакады и галереи до проводов

См. 2.5.113

Воздушная линия связи и радиофикации

То же

1,5

Пересечение кабельных эстакад и галерей с воздушными линиями электропередачи, внутризаводскими железными и автомобильными дорогами, пожарными проездами, канатными дорогами, воздушными линиями связи и радиофикации и трубопроводами рекомендуется выполнять под углом не менее 30 град.

Расположение эстакад и галерей во взрывоопасных зонах - см. гл. 7.3, расположение эстакад и галерей в пожароопасных зонах - см. гл. 7.4.

При параллельном следовании эстакад и галерей с воздушными линиями связи и радиофикации наименьшие расстояния между кабелями и проводами линии связи и радиофикации определяются на основании расчета влияния кабельных линий на линии связи и радиофикации. Провода связи и радиофикации могут располагаться под и над эстакадами и галереями.

Наименьшая высота кабельной эстакады и галереи в непроезжей части территории промышленного предприятия должна приниматься из расчета возможности прокладки нижнего ряда кабелей на уровне не менее 2,5 м от планировочной отметки земли.


ПРОКЛАДКА КАБЕЛЬНЫХ ЛИНИЙ В ПРОИЗВОДСТВЕННЫХ ПОМЕЩЕНИЯХ

2.3.134. При прокладке кабельных линий в производственных помещениях должны быть выполнены следующие требования:

1. Кабели должны быть доступны для ремонта, а открыто проложенные - и для осмотра.

Кабели (в том числе бронированные), расположенные в местах, где производится перемещение механизмов, оборудования, грузов и транспорта, должны быть защищены от повреждений в соответствии с требованиями, приведенными в 2.3.15.

2. Расстояние в свету между кабелями должно соответствовать приведенному в табл. 2.3.1.

3. Расстояние между параллельно проложенными силовыми кабелями и всякого рода трубопроводами, как правило, должно быть не менее 0,5 м, а между газопроводами и трубопроводами с горючими жидкостями - не менее 1 м. При меньших расстояниях сближения и при пересечениях кабели должны быть защищены от механических повреждений (металлическими трубами, кожухами и т.п.) на всем участке сближения плюс по 0,5 м с каждой его стороны, а в необходимых случаях защищены от перегрева.

Пересечения кабелями проходов должны выполняться на высоте не менее 1,8 м от пола.

Параллельная прокладка кабелей над и под маслопроводами и трубопроводами с горючей жидкостью в вертикальной плоскости не допускается.

2.3.135. Прокладка кабелей в полу и междуэтажных перекрытиях должна производиться в каналах или трубах; заделка в них кабелей наглухо не допускается. Проход кабелей через перекрытия и внутренние стены может производиться в трубах или проемах; после прокладки кабелей зазоры в трубах и проемах должны быть заделаны легко пробиваемым несгораемым материалом.

Прокладка кабелей в вентиляционных каналах запрещается. Допускается пересечение этих каналов одиночными кабелями, заключенными в стальные трубы.

Открытая прокладка кабеля по лестничным клеткам не допускается.


ПОДВОДНАЯ ПРОКЛАДКА КАБЕЛЬНЫХ ЛИНИЙ

2.3.136. При пересечении кабельными линиями рек, каналов и т.п. кабели должны прокладываться преимущественно на участках с дном и берегами, мало подверженными размыванию (пересечение ручьев - см. 2.3.46). При прокладке кабелей через реки с неустойчивым руслом и берегами, подверженными размыванию, заглубление кабелей в дно должно быть сделано с учетом местных условий. Глубина заложения кабелей определяется проектом. Прокладка кабелей в зонах пристаней, причалов, гаваней, паромных переправ, а также зимних регулярных стоянок судов и барж не рекомендуется.

2.3.137. При прокладке кабельных линий в море должны учитываться данные о глубине, скорости и стиле перемещения воды в месте перехода, господствующих ветрах, профиле и химическом составе дна, химическом составе воды.

2.3.138. Прокладка кабельных линий должна производиться по дну таким образом, чтобы в неровных местах они не оказались на весу; острые выступы должны быть устранены. Отмели, каменные гряды и другие подводные препятствия на трассе следует обходить или предусматривать в них траншеи или проходы.

2.3.139. При пересечении кабельными линиями рек, каналов и т.п. кабели, как правило, должны заглубляться в дно на глубину не менее 1 м на прибрежных и мелководных участках, а также на судоходных и сплавных путях; 2 м при пересечении кабельными маслонаполненными линиями.

В водоемах, где периодически производятся дноуглубительные работы, кабели заглубляются в дно до отметки, определяемой по согласованию с организациями водного транспорта.

При прокладке кабельных маслонаполненных линий 110 - 220 кВ на судоходных реках и каналах в целях защиты их от механических повреждений рекомендуется заполнять траншеи мешками с песком с последующей наброской камней.

2.3.140. Расстояние между кабелями, заглубляемыми в дно рек, каналов и т.п. с шириной водоема до 100 м, рекомендуется принимать не менее 0,25 м. Вновь сооружаемые подводные кабельные линии должны прокладываться на расстоянии от действующих кабельных линий не менее 1,25 глубины водоема, исчисленной для многолетнего среднего уровня воды.

При прокладке в воде кабелей низкого давления на глубине 5 - 15 м и при скорости течения, не превышающей 1 м/с, расстояния между отдельными фазами (без специальных креплений фаз между собой) рекомендуется принимать не менее 0,5 м, а расстояния между крайними кабелями параллельных линий - не менее 5 м.

При подводных прокладках на глубине более 15 м, а также при скоростях течения более 1 м/с расстояния между отдельными фазами и линиями принимаются в соответствии с проектом.

При параллельной прокладке под водой кабельных маслонаполненных линий и линий до 35 кВ расстояние по горизонтали между ними в свету должно быть не менее 1,25 глубины, исчисленной для многолетнего среднего уровня воды, но не менее 20 м.

Расстояние по горизонтали от кабелей, заглубляемых в дно рек, каналов и других водоемов, до трубопроводов (нефтепроводов, газопроводов и т.п.) должно определяться проектом в зависимости от вида дноуглубительных работ, выполняемых при прокладках трубопроводов и кабелей, и быть не менее 50 м. Допускается уменьшение этого расстояния до 15 м по согласованию с организациями, в ведении которых находятся кабельные линии и трубопроводы.

2.3.141. На берегах без усовершенствованных набережных в месте подводного кабельного перехода должен быть предусмотрен резерв длиной не менее 10 м при речной и 30 м при морской прокладке, который укладывается восьмеркой. На усовершенствованных набережных кабели должны прокладываться в трубах. В месте выхода кабелей, как правило, должны быть устроены кабельные колодцы. Верхний конец трубы должен входить в береговой колодец, а нижний находиться на глубине не менее 1 м от наименьшего уровня воды. На береговых участках трубы должны быть прочно заделаны.

2.3.142. В местах, где русло и берега подвержены размыву, необходимо принять меры против обнажения кабелей при ледоходах и наводнениях путем укрепления берегов (замощение, отбойные дамбы, сваи, шпунты, плиты и т.д.).

2.3.143. Пересечение кабелей между собой под водой запрещается.

2.3.144. Подводные кабельные переходы должны быть обозначены на берегах сигнальными знаками согласно действующим правилам плавания по внутренним судоходным путям и морским проливам.

2.3.145. При прокладке в воде трех и более кабелей до 35 кВ должен быть предусмотрен один резервный кабель на каждые три рабочих. При прокладке в воде кабельных маслонаполненных линий из однофазных кабелей должен быть предусмотрен резерв: для одной линии - одна фаза, для двух линий - две фазы, для трех и более - по проекту, но не менее двух фаз. Резервные фазы должны быть проложены таким образом, чтобы они могли быть использованы взамен любой из действующих рабочих фаз.


ПРОКЛАДКА КАБЕЛЬНЫХ ЛИНИЙ ПО СПЕЦИАЛЬНЫМ СООРУЖЕНИЯМ

2.3.146. Прокладка кабельных линий по каменным, железобетонным и металлическим мостам должна выполняться под пешеходной частью моста в каналах или в отдельных для каждого кабеля несгораемых трубах; необходимо предусмотреть меры по предотвращению стока ливневых вод по этим трубам. По металлическим и железобетонным мостам и при подходе к ним кабели рекомендуется прокладывать в асбестоцементных трубах. В местах перехода с конструкций моста в грунт кабели рекомендуется прокладывать также в асбестоцементных трубах.

Все подземные кабели при прохождении по металлическим и железобетонным мостам должны быть электрически изолированы от металлических частей моста.

2.3.147. Прокладка кабельных линий по деревянным сооружениям (мостам, причалам, пирсам и т.п.) должна выполняться в стальных трубах.

2.3.148. В местах перехода кабелей через температурные швы мостов и с конструкций мостов на устои должны быть приняты меры для предотвращения возникновения в кабелях механических усилий.

2.3.149. Прокладка кабельных линий по плотинам, дамбам, пирсам и причалам непосредственно в земляной траншее допускается при толщине слоя земли не менее 1 м.

2.3.150. Прокладка кабельных маслонаполненных линий по мостам не допускается.


Утверждена

Главтехуправлением

Минэнерго СССР

25 сентября 1975 года

Согласована

с Госстроем СССР

1 октября 1973 года

Глава 2.4. ВОЗДУШНЫЕ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ

НАПРЯЖЕНИЕМ ДО 1 КВ

Утратила силу с 1 октября 2003 года. - Правила, утв. Приказом Минэнерго РФ от 20.05.2003 N 187.


Утверждена

Главтехуправлением

Минэнерго СССР

24 июня 1977 года

Согласована

с Госстроем СССР

26 июля 1976 года

Глава 2.5. ВОЗДУШНЫЕ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ

НАПРЯЖЕНИЕМ ВЫШЕ 1 КВ

Утратила силу с 1 октября 2003 года. - Правила, утв. Приказом Минэнерго РФ от 20.05.2003 N 187.


Раздел 3. ЗАЩИТА И АВТОМАТИКА


Утверждена

Главтехуправлением

и Госэнергонадзором

Минэнерго СССР

12 марта 1981 года

Глава 3.1. ЗАЩИТА ЭЛЕКТРИЧЕСКИХ СЕТЕЙ НАПРЯЖЕНИЕМ ДО 1 КВ


ОБЛАСТЬ ПРИМЕНЕНИЯ, ОПРЕДЕЛЕНИЯ

3.1.1. Настоящая глава Правил распространяется на защиту электрических сетей до 1 кВ, сооружаемых как внутри, так и вне зданий. Дополнительные требования к защите сетей указанного напряжения, вызванные особенностями различных электроустановок, приведены в других главах Правил.

3.1.2. Аппаратом защиты называется аппарат, автоматически отключающий защищаемую электрическую цепь при ненормальных режимах.


ТРЕБОВАНИЯ К АППАРАТАМ ЗАЩИТЫ

3.1.3. Аппараты защиты по своей отключающей способности должны соответствовать максимальному значению тока КЗ в начале защищаемого участка электрической сети (см. также гл. 1.4).

Допускается установка аппаратов защиты, нестойких к максимальным значениям тока КЗ, а также выбранных по значению одноразовой предельной коммутационной способности, если защищающий их групповой аппарат или ближайший аппарат, расположенный по направлению к источнику питания, обеспечивает мгновенное отключение тока КЗ, для чего необходимо, чтобы ток уставки мгновенно действующего расцепителя (отсечки) указанных аппаратов был меньше тока одноразовой коммутационной способности каждого из группы нестойких аппаратов, и если такое неселективное отключение всей группы аппаратов не грозит аварией, порчей дорогостоящего оборудования и материалов или расстройством сложного технологического процесса.

3.1.4. Номинальные токи плавких вставок предохранителей и токи уставок автоматических выключателей, служащих для защиты отдельных участков сети, во всех случаях следует выбирать по возможности наименьшими по расчетным токам этих участков или по номинальным токам электроприемников, но таким образом, чтобы аппараты защиты не отключали электроустановки при кратковременных перегрузках (пусковые токи, пики технологических нагрузок, токи при самозапуске и т.п.).

3.1.5. В качестве аппаратов защиты должны применяться автоматические выключатели или предохранители. Для обеспечения требований быстродействия, чувствительности или селективности допускается при необходимости применение устройств защиты с использованием выносных реле (реле косвенного действия).

3.1.6. Автоматические выключатели и предохранители пробочного типа должны присоединяться к сети так, чтобы при вывинченной пробке предохранителя (автоматического выключателя) винтовая гильза предохранителя (автоматического выключателя) оставалась без напряжения. При одностороннем питании присоединение питающего проводника (кабеля или провода) к аппарату защиты должно выполняться, как правило, к неподвижным контактам.

3.1.7. Каждый аппарат защиты должен иметь надпись, указывающую значения номинального тока аппарата, уставки расцепителя и номинального тока плавкой вставки, требующиеся для защищаемой им сети. Надписи рекомендуется наносить на аппарате или схеме, расположенной вблизи места установки аппаратов защиты.


ВЫБОР ЗАЩИТЫ

3.1.8. Электрические сети должны иметь защиту от токов короткого замыкания, обеспечивающую по возможности наименьшее время отключения и требования селективности.

Защита должна обеспечивать отключение поврежденного участка при КЗ в конце защищаемой линии: одно-, двух- и трехфазных - в сетях с глухозаземленной нейтралью; двух- и трехфазных - в сетях с изолированной нейтралью.

Надежное отключение поврежденного участка сети обеспечивается, если отношение наименьшего расчетного тока КЗ к номинальному току плавкой вставки предохранителя или расцепителя автоматического выключателя будет не менее значений, приведенных в 1.7.79 и 7.3.139.

3.1.9. В сетях, защищаемых только от токов КЗ (не требующих защиты от перегрузки согласно 3.1.10), за исключением протяженных сетей, например сельских, коммунальных, допускается не выполнять расчетной проверки приведенной в 1.7.79 и 7.3.139 кратности тока КЗ, если обеспечено условие, чтобы по отношению к длительно допустимым токовым нагрузкам проводников, приведенным в таблицах гл. 1.3, аппараты защиты имели кратность не более:

300% для номинального тока плавкой вставки предохранителя;

450% для тока уставки автоматического выключателя, имеющего только максимальный мгновенно действующий расцепитель (отсечку);

100% для номинального тока расцепителя автоматического выключателя с нерегулируемой обратно зависящей от тока характеристикой (независимо от наличия или отсутствия отсечки);

125% для тока трогания расцепителя автоматического выключателя с регулируемой обратной зависящей от тока характеристикой; если на этом автоматическом выключателе имеется еще отсечка, то ее кратность тока срабатывания не ограничивается.

Наличие аппаратов защиты с завышенными уставками тока не является обоснованием для увеличения сечения проводников сверх указанных в гл. 1.3.

3.1.10. Сети внутри помещений, выполненные открыто проложенными проводниками с горючей наружной оболочкой или изоляцией, должны быть защищены от перегрузки.

Кроме того, должны быть защищены от перегрузки сети внутри помещений:

осветительные сети в жилых и общественных зданиях, в торговых помещениях, служебно-бытовых помещениях промышленных предприятий, включая сети для бытовых и переносных электроприемников (утюгов, чайников, плиток, комнатных холодильников, пылесосов, стиральных и швейных машин и т.п.), а также в пожароопасных зонах;

силовые сети на промышленных предприятиях, в жилых и общественных зданиях, торговых помещениях - только в случаях, когда по условиям технологического процесса или по режиму работы сети может возникать длительная перегрузка проводников;

сети всех видов во взрывоопасных зонах - согласно требованиям 7.3.94.

3.1.11. В сетях, защищаемых от перегрузок (см. 3.1.10), проводники следует выбирать по расчетному току, при этом должно быть обеспечено условие, чтобы по отношению к длительно допустимым токовым нагрузкам, приведенным в таблицах гл. 1.3, аппараты защиты имели кратность не более:

80% для номинального тока плавкой вставки или тока уставки автоматического выключателя, имеющего только максимальный мгновенно действующий расцепитель (отсечку), - для проводников с поливинилхлоридной, резиновой и аналогичной по тепловым характеристикам изоляцией; для проводников, прокладываемых в невзрывоопасных производственных помещениях промышленных предприятий, допускается 100%;

100% для номинального тока плавкой вставки или тока уставки автоматического выключателя, имеющего только максимальный мгновенно действующий расцепитель (отсечку), - для кабелей с бумажной изоляцией;

100% для номинального тока расцепителя автоматического выключателя с нерегулируемой обратно зависящей от тока характеристикой (независимо от наличия или отсутствия отсечки) - для проводников всех марок;

100% для тока трогания расцепителя автоматического выключателя с регулируемой обратно зависящей от тока характеристикой - для проводников с поливинилхлоридной, резиновой и аналогичной по тепловым характеристикам изоляцией;

125% для тока трогания расцепителя автоматического выключателя с регулируемой обратно зависящей от тока характеристикой - для кабелей с бумажной изоляцией и изоляцией из вулканизированного полиэтилена.

3.1.12. Длительно допустимая токовая нагрузка проводников ответвлений к короткозамкнутым электродвигателям должна быть не менее: 100% номинального тока электродвигателя в невзрывоопасных зонах; 125% номинального тока электродвигателя во взрывоопасных зонах.

Соотношения между длительно допустимой нагрузкой проводников к короткозамкнутым электродвигателям и уставками аппаратов защиты в любом случае не должны превышать указанных в 3.1.9 (см. также 7.3.97).

3.1.13. В случаях, когда требуемая допустимая длительная токовая нагрузка проводника, определенная по 3.1.9 и 3.1.11, не совпадает с данными таблиц допустимых нагрузок, приведенных в гл. 1.3, допускается применение проводника ближайшего меньшего сечения, но не менее, чем это требуется по расчетному току.


МЕСТА УСТАНОВКИ АППАРАТОВ ЗАЩИТЫ

3.1.14. Аппараты защиты следует располагать по возможности в доступных для обслуживания местах таким образом, чтобы была исключена возможность их механических повреждений. Установка их должна быть выполнена так, чтобы при оперировании с ними или при их действии были исключены опасность для обслуживающего персонала и возможность повреждения окружающих предметов.

Аппараты защиты с открытыми токоведущими частями должны быть доступны для обслуживания только квалифицированному персоналу.

3.1.15. Аппараты защиты следует устанавливать, как правило, в местах сети, где сечение проводника уменьшается (по направлению к месту потребления электроэнергии) или где это необходимо для обеспечения чувствительности и селективности защиты (см. также 3.1.16 и 3.1.19).

3.1.16. Аппараты защиты должны устанавливаться непосредственно в местах присоединения защищаемых проводников к питающей линии. Допускается в случаях необходимости принимать длину участка между питающей линией и аппаратом защиты ответвления до 6 м. Проводники на этом участке могут иметь сечение меньше, чем сечение проводников питающей линии, но не менее сечения проводников после аппарата защиты.

Для ответвлений, выполняемых в труднодоступных местах (например, на большой высоте), аппараты защиты допускается устанавливать на расстоянии до 30 м от точки ответвления в удобном для обслуживания месте (например, на вводе в распределительный пункт, в пусковом устройстве электроприемника и др.). При этом сечение проводников ответвления должно быть не менее сечения, определяемого расчетным током, но должно обеспечивать не менее 10% пропускной способности защищенного участка питающей линии. Прокладка проводников ответвлений в указанных случаях (при длинах ответвлений до 6 и до 30 м) должна производиться при горючих наружных оболочке или изоляции проводников - в трубах, металлорукавах или коробах, в остальных случаях, кроме кабельных сооружений, пожароопасных и взрывоопасных зон, - открыто на конструкциях при условии их защиты от возможных механических повреждений.

3.1.17. При защите сетей предохранителями последние должны устанавливаться на всех нормально незаземленных полюсах или фазах. Установка предохранителей в нулевых рабочих проводниках запрещается.

3.1.18. При защите сетей с глухозаземленной нейтралью автоматическими выключателями расцепители их должны устанавливаться во всех нормально незаземленных проводниках (см. также 7.3.99).

При защите сетей с изолированной нейтралью в трехпроводных сетях трехфазного тока и двухпроводных сетях однофазного или постоянного тока допускается устанавливать расцепители автоматических выключателей в двух фазах при трехпроводных сетях и в одной фазе (полюсе) при двухпроводных. При этом в пределах одной и той же электроустановки защиту следует осуществлять в одних и тех же фазах (полюсах).

Расцепители в нулевых проводниках допускается устанавливать лишь при условии, что при их срабатывании отключаются от сети одновременно все проводники, находящиеся под напряжением.

3.1.19. Аппараты защиты допускается не устанавливать, если это целесообразно по условиям эксплуатации, в местах:

1) ответвления проводников от шин шита к аппаратам, установленным на том же щите; при этом проводники должны выбираться по расчетному току ответвления;

2) снижения сечения питающей линии по ее длине и на ответвлениях от нее, если защита предыдущего участка линии защищает участок со сниженным сечением проводников или если незащищенные участки линии или ответвления от нее выполнены проводниками, выбранными с сечением не менее половины сечения проводников защищенного участка линии;

3) ответвления от питающей линии к электроприемникам малой мощности, если питающая их линия защищена аппаратом с уставкой не более 25 А для силовых электроприемников и бытовых электроприборов, а для светильников - согласно 6.2.2;

4) ответвления от питающей линии проводников цепей измерений, управления и сигнализации, если эти проводники не выходят за пределы соответствующих машин или щита или если эти проводники выходят за их пределы, но электропроводка выполнена в трубах или имеет негорючую оболочку.

Не допускается устанавливать аппараты защиты в местах присоединения к питающей линии таких цепей управления, сигнализации и измерения, отключение которых может повлечь за собой опасные последствия (отключение пожарных насосов, вентиляторов, предотвращающих образование взрывоопасных смесей, некоторых механизмов собственных нужд электростанций и т.п.). Во всех случаях такие цепи должны выполняться проводниками в трубах или иметь негорючую оболочку. Сечение этих цепей должно быть не менее приведенных в 3.4.4.


Утверждена

Главтехуправлением

Минэнерго СССР

30 мая 1979 года

Глава 3.2. РЕЛЕЙНАЯ ЗАЩИТА


ОБЛАСТЬ ПРИМЕНЕНИЯ

3.2.1. Настоящая глава Правил распространяется на устройства релейной защиты элементов электрической части энергосистем, промышленных и других электроустановок выше 1 кВ; генераторов, трансформаторов (автотрансформаторов), блоков генератор-трансформатор, линий электропередачи, шин и синхронных компенсаторов.

Защита всех электроустановок выше 500 кВ, кабельных линий выше 35 кВ, а также электроустановок атомных электростанций и передач постоянного тока в настоящей главе Правил не рассматривается.

Требования к защите электрических сетей до 1 кВ, электродвигателей, конденсаторных установок, электротермических установок см. соответственно в гл. 3.1, 5.3, 5.6 и 7.5.

Устройства релейной защиты элементов электроустановок, не рассмотренные в этой и других главах, должны выполняться в соответствии с общими требованиями настоящей главы.


ОБЩИЕ ТРЕБОВАНИЯ

3.2.2. Электроустановки должны быть оборудованы устройствами релейной защиты, предназначенными для:

а) автоматического отключения поврежденного элемента от остальной, неповрежденной части электрической системы (электроустановки) с помощью выключателей; если повреждение (например, замыкание на землю в сетях с изолированной нейтралью) непосредственно не нарушает работу электрической системы, допускается действие релейной защиты только на сигнал.

б) реагирования на опасные, ненормальные режимы работы элементов электрической системы (например, перегрузку, повышение напряжения в обмотке статора гидрогенератора); в зависимости от режима работы и условий эксплуатации электроустановки релейная защита должна быть выполнена с действием на сигнал или на отключение тех элементов, оставление которых в работе может привести к возникновению повреждения.

3.2.3. С целью удешевления электроустановок вместо автоматических выключателей и релейной защиты следует применять предохранители или открытые плавкие вставки, если они:

могут быть выбраны с требуемыми параметрами (номинальные напряжение и ток, номинальный ток отключения и др.);

обеспечивают требуемые селективность и чувствительность;

не препятствуют применению автоматики (автоматическое повторное включение - АПВ, автоматическое включение резерва - АВР и т.п.), необходимой по условиям работы электроустановки.

При использовании предохранителей или открытых плавких вставок в зависимости от уровня несимметрии в неполнофазном режиме и характера питаемой нагрузки следует рассматривать необходимость установки на приемной подстанции защиты от неполнофазного режима.

3.2.4. Устройства релейной защиты должны обеспечивать наименьшее возможное время отключения КЗ в целях сохранения бесперебойной работы неповрежденной части системы (устойчивая работа электрической системы и электроустановок потребителей, обеспечение возможности восстановления нормальной работы путем успешного действия АПВ и АВР, самозапуска электродвигателей, втягивания в синхронизм и пр.) и ограничения области и степени повреждения элемента.

3.2.5. Релейная защита, действующая на отключение, как правило, должна обеспечивать селективность действия, с тем чтобы при повреждении какого-либо элемента электроустановки отключался только этот поврежденный элемент.

Допускается неселективное действие защиты (исправляемое последующим действием АПВ или АВР):

а) для обеспечения, если это необходимо, ускорения отключения КЗ (см. 3.2.4);

б) при использовании упрощенных главных электрических схем с отделителями в цепях линий или трансформаторов, отключающими поврежденный элемент в бестоковую паузу.

3.2.6. Устройства релейной защиты с выдержками времени, обеспечивающими селективность действия, допускается выполнять, если: при отключении КЗ с выдержками времени обеспечивается выполнение требований 3.2.4; защита действует в качестве резервной (см. 3.2.15).

3.2.7. Надежность функционирования релейной защиты (срабатывание при появлении условий на срабатывание и несрабатывание при их отсутствии) должна быть обеспечена применением устройств, которые по своим параметрам и исполнению соответствуют назначению, а также надлежащим обслуживанием этих устройств.

При необходимости следует использовать специальные меры повышения надежности функционирования, в частности схемное резервирование, непрерывный или периодический контроль состояния и др. Должна также учитываться вероятность ошибочных действий обслуживающего персонала при выполнении необходимых операций с релейной защитой.

3.2.8. При наличии релейной защиты, имеющей цепи напряжения, следует предусматривать устройства:

автоматически выводящие защиту из действия при отключении автоматических выключателей, перегорании предохранителей и других нарушениях цепей напряжения (если эти нарушения могут привести к ложному срабатыванию защиты в нормальном режиме), а также сигнализирующие о нарушениях этих цепей;

сигнализирующие о нарушениях цепей напряжения, если эти нарушения не приводят к ложному срабатыванию защиты в условиях нормального режима, но могут привести к излишнему срабатыванию в других условиях (например, при КЗ вне защищаемой зоны).

3.2.9. При установке быстродействующей релейной защиты на линиях электропередачи с трубчатыми разрядниками должна быть предусмотрена отстройка ее от работы разрядников, для чего:

наименьшее время срабатывания релейной защиты до момента подачи сигнала на отключение должно быть больше времени однократного срабатывания разрядников, а именно около 0,06 - 0,08 с;

пусковые органы защиты, срабатывающие от импульса тока разрядников, должны иметь возможно меньшее время возврата (около 0,01 с от момента исчезновения импульса).

3.2.10. Для релейных защит с выдержками времени в каждом конкретном случае следует рассматривать целесообразность обеспечения действия защиты от начального значения тока или сопротивления при КЗ для исключения отказов срабатывания защиты (из-за затухания токов КЗ во времени, в результате возникновения качаний, появления дуги в месте повреждения и др.).

3.2.11. Защиты в электрических сетях 110 кВ и выше должны иметь устройства, блокирующие их действие при качаниях или асинхронном ходе, если в указанных сетях возможны такие качания или асинхронный ход, при которых защиты могут срабатывать излишне.

Допускается применение аналогичных устройств и для линий ниже 110 кВ, связывающих между собой источники питания (исходя из вероятности возникновения качаний или асинхронного хода и возможных последствий излишних отключений).

Допускается выполнение защиты без блокировки при качаниях, если защита отстроена от качаний по времени (выдержка времени защиты - около 1,5 - 2 с).

3.2.12. Действие релейной защиты должно фиксироваться указательными реле, встроенными в реле указателями срабатывания, счетчиками числа срабатываний или другими устройствами в той степени, в какой это необходимо для учета и анализа работы защит.

3.2.13. Устройства, фиксирующие действие релейной защиты на отключение, следует устанавливать так, чтобы сигнализировалось действие каждой защиты, а при сложной защите-отдельных ее частей (разные ступени защиты, отдельные комплекты защит от разных видов повреждения и т.п.).

3.2.14. На каждом из элементов электроустановки должна быть предусмотрена основная защита, предназначенная для ее действия при повреждениях в пределах всего защищаемого элемента с временем, меньшим, чем у других установленных на этом элементе защит.

3.2.15. Для действия при отказах защит или выключателей смежных элементов следует предусматривать резервную защиту, предназначенную для обеспечения дальнего резервного действия.

Если основная защита элемента обладает абсолютной селективностью (например, высокочастотная защита, продольная и поперечная дифференциальные защиты), то на данном элементе должна быть установлена резервная защита, выполняющая функции не только дальнего, но и ближнего резервирования, т.е. действующая при отказе основной защиты данного элемента или выведении ее из работы. Например, если в качестве основной защиты от замыканий между фазами применена дифференциально-фазная защита, то в качестве резервной может быть применена трехступенчатая дистанционная защита.

Если основная защита линии 110 кВ и выше обладает относительной селективностью (например, ступенчатые защиты с выдержками времени), то:

отдельную резервную защиту допускается не предусматривать при условии, что дальнее резервное действие защит смежных элементов при КЗ на этой линии обеспечивается;

должны предусматриваться меры по обеспечению ближнего резервирования, если дальнее резервирование при КЗ на этой линии не обеспечивается.

3.2.16. Для линии электропередачи 35 кВ и выше с целью повышения надежности отключения повреждения в начале линии может быть предусмотрена в качестве дополнительной защиты токовая отсечка без выдержки времени при условии выполнения требований 3.2.26.

3.2.17. Если полное обеспечение дальнего резервирования связано со значительным усложнением защиты или технически невозможно, допускается:

1) не резервировать отключения КЗ за трансформаторами, на реактированных линиях, линиях 110 кВ и выше при наличии ближнего резервирования, в конце длинного смежного участка линии 6 - 35 кВ;

2) иметь дальнее резервирование только при наиболее часто встречающихся видах повреждений, без учета редких режимов работы и при учете каскадного действия защиты;

3) предусматривать неселективное действие защиты при КЗ на смежных элементах (при дальнем резервном действии) с возможностью обесточения в отдельных случаях подстанций; при этом следует по возможности обеспечивать исправление этих неселективных отключений действием АПВ или АВР.

3.2.18. Устройства резервирования при отказе выключателей (УРОВ) должны предусматриваться в электроустановках 110 - 500 кВ. Допускается не предусматривать УРОВ в электроустановках 110 - 220 кВ при соблюдении следующих условий:

1) обеспечиваются требуемая чувствительность и допустимые по условиям устойчивости времена отключения от устройств дальнего резервирования;

2) при действии резервных защит нет потери дополнительных элементов из-за отключения выключателей, непосредственно не примыкающих к отказавшему выключателю (например, отсутствуют секционированные шины, линии с ответвлением).

На электростанциях с генераторами, имеющими непосредственное охлаждение проводников обмоток статоров, для предотвращения повреждений генераторов при отказах выключателей 110 - 500 кВ следует предусматривать УРОВ независимо от прочих условий.

При отказе одного из выключателей поврежденного элемента (линия, трансформатор, шины) электроустановки УРОВ должно действовать на отключение выключателей, смежных с отказавшим.

Если защиты присоединены к выносным трансформаторам тока, то УРОВ должно действовать и при КЗ в зоне между этими трансформаторами тока и выключателем.

Допускается применение упрощенных УРОВ, действующих при КЗ с отказами выключателей не на всех элементах (например, только при КЗ на линиях); при напряжении 35 - 220 кВ, кроме того, допускается применение устройств, действующих лишь на отключение шиносоединительного (секционного) выключателя.

При недостаточной эффективности дальнего резервирования следует рассматривать необходимость повышения надежности ближнего резервирования в дополнение к УРОВ.

3.2.19. При выполнении резервной защиты в виде отдельного комплекта ее следует осуществлять, как правило, так, чтобы была обеспечена возможность раздельной проверки или ремонта основной или резервной защиты при работающем элементе. При этом основная и резервная защиты должны питаться, как правило, от разных вторичных обмоток трансформаторов тока.

Питание основных и резервных защит линий электропередачи 220 кВ и выше должно осуществляться, как правило, от разных автоматических выключателей оперативного постоянного тока.

3.2.20. Оценка чувствительности основных типов релейных защит должна производиться при помощи коэффициента чувствительности, определяемого:

для защит, реагирующих на величины, возрастающие в условиях повреждений, - как отношение расчетных значений этих величин (например, тока, или напряжения) при металлическом КЗ в пределах защищаемой зоны к параметрам срабатывания защит;

для защит, реагирующих на величины, уменьшающиеся в условиях повреждений, - как отношение параметров срабатывания к расчетным значениям этих величин (например, напряжения или сопротивления) при металлическом КЗ в пределах защищаемой зоны.

Расчетные значения величин должны устанавливаться, исходя из наиболее неблагоприятных видов повреждения, но для реально возможного режима работы электрической системы.

3.2.21. При оценке чувствительности основных защит необходимо исходить из того, что должны обеспечиваться следующие наименьшие коэффициенты их чувствительности:

1. Максимальные токовые защиты с пуском и без пуска напряжения, направленные и ненаправленные, а также токовые одноступенчатые направленные и ненаправленные защиты, включенные на составляющие обратной или нулевой последовательностей:

для органов тока и напряжения - около 1,5;

для органов направления мощности обратной и нулевой последовательности - около 2,0 по мощности и около 1,5 по току и напряжению;

для органа направления мощности, включенного на полные ток и напряжение, не нормируется по мощности и около 1,5 по току.

Для максимальных токовых защит трансформаторов с низшим напряжением 0,23 - 0,4 кВ наименьший коэффициент чувствительности может быть около 1,5.

2. Ступенчатые защиты тока или тока и напряжения, направленные и ненаправленные, включенные на полные токи и напряжения или на составляющие нулевой последовательности:

для органов тока и напряжения ступени защиты, предназначенной для действия при КЗ в конце защищаемого участка, без учета резервного действия - около 1,5, а при наличии надежно действующей селективной резервной ступени - около 1,3; при наличии на противоположном конце линии отдельной защиты шин соответствующие коэффициенты чувствительности (около 1,5 и около 1,3) для ступени защиты нулевой последовательности допускается обеспечивать в режиме каскадного отключения;

для органов направления мощности нулевой и обратной последовательности - около 2,0 по мощности и около 1,5 по току и напряжению;

для органа направления мощности, включенного на полные ток и напряжение, не нормируется по мощности и около 1,5 по току.

3. Дистанционные защиты от многофазных КЗ:

для пускового органа любого типа и дистанционного органа третьей ступени - около 1,5;

для дистанционного органа второй ступени, предназначенного для действия при КЗ в конце защищаемого участка, без учета резервного действия - около 1,5, а при наличии третьей ступени защиты - около 1,25; для указанного органа чувствительность по току должна быть около 1,3 (по отношению к току точной работы) при повреждении в той же точке.

4. Продольные дифференциальные защиты генераторов, трансформаторов, линий и других элементов, а также полная дифференциальная защита шин - около 2,0; для токового пускового органа неполной дифференциальной дистанционной защиты шин генераторного напряжения чувствительность должна быть около 2,0, а для первой ступени неполной дифференциальной токовой защиты шин генераторного напряжения, выполненной в виде отсечки, - около 1,5 (при КЗ на шинах).

Для дифференциальной защиты генераторов и трансформаторов чувствительность следует проверять при КЗ на выводах. При этом вне зависимости от значений коэффициента чувствительности для гидрогенераторов и турбогенераторов с непосредственным охлаждением проводников обмоток ток срабатывания защиты следует принимать менее номинального тока генератора (см. 3.2.36). Для автотрансформаторов и повышающих трансформаторов мощностью 63 МВ x А и более ток срабатывания без учета торможения рекомендуется принимать менее номинального (для автотрансформаторов - менее тока, соответствующего типовой мощности). Для остальных трансформаторов мощностью 25 МВ x А и более ток срабатывания без учета торможения рекомендуется принимать не более 1,5 номинального тока трансформатора.

Допускается снижение коэффициента чувствительности для дифференциальной защиты трансформатора или блока генератор-трансформатор до значения около 1,5 в следующих случаях (в которых обеспечение коэффициента чувствительности около 2,0 связано со значительным усложнением защиты или технически невозможно):

при КЗ на выводах низшего напряжения понижающих трансформаторов мощностью менее 80 МВ x А (определяется с учетом регулирования напряжения);

в режиме включения трансформатора под напряжение, а также для кратковременных режимов его работы (например, при отключении одной из питающих сторон).

Для режима подачи напряжения на поврежденные шины включением одного из питающих элементов допускается снижение коэффициента чувствительности для дифференциальной защиты шин до значения около 1,5.

Указанный коэффициент 1,5 относится также к дифференциальной защите трансформатора при КЗ за реактором, установленным на стороне низшего напряжения трансформатора и входящим в зону его дифференциальной защиты. При наличии других защит, охватывающих реактор и удовлетворяющих требованиям чувствительности при КЗ за реактором, чувствительность дифференциальной защиты трансформатора при КЗ в этой точке допускается не обеспечивать.

5. Поперечные дифференциальные направленные защиты параллельных линий:

для реле тока и реле напряжения пускового органа комплектов защиты от междуфазных КЗ и замыканий на землю - около 2,0 при включенных выключателях с обеих сторон поврежденной линии (в точке одинаковой чувствительности) и около 1,5 при отключенном выключателе с противоположной стороны поврежденной линии;

для органа направления мощности нулевой последовательности - около 4,0 по мощности и около 2,0 по току и напряжению при включенных выключателях с обеих сторон и около 2,0 по мощности и около 1,5 по току и напряжению при отключенном выключателе с противоположной стороны;

для органа направления мощности, включенного на полные ток и напряжение, по мощности не нормируется, а по току - около 2,0 при включенных выключателях с обеих сторон и около 1,5 при отключенном выключателе с противоположной стороны.

6. Направленные защиты с высокочастотной блокировкой:

для органа направления мощности обратной или нулевой последовательности, контролирующего цепь отключения, - около 3,0 по мощности, около 2,0 по току и напряжению;

для пусковых органов, контролирующих цепь отключения, - около 2,0 по току и напряжению, около 1,5 по сопротивлению.

7. Дифференциально-фазные высокочастотные защиты:

для пусковых органов, контролирующих цепь отключения, - около 2,0 по току и напряжению, около 1,5 по сопротивлению.

8. Токовые отсечки без выдержки времени, устанавливаемые на генераторах мощностью до 1 МВт и трансформаторах, при КЗ в месте установки защиты - около 2,0.

9. Защиты от замыканий на землю на кабельных линиях в сетях с изолированной нейтралью (действующие на сигнал или на отключение): для защит, реагирующих на токи основной частоты, - около 1,25; для защит, реагирующих на токи повышенных частот, - около 1,5.

10. Защиты от замыканий на землю на ВЛ в сетях с изолированной нейтралью, действующие на сигнал или на отключение, - около 1,5.

3.2.22. При определении коэффициентов чувствительности, указанных в 3.2.21, п. 1, 2, 5 и 7, необходимо учитывать следующее:

1. Чувствительность по мощности индукционного реле направления мощности проверяется только при включении его на составляющие токов и напряжений обратной и нулевой последовательностей.

2. Чувствительность реле направления мощности, выполненного по схеме сравнения (абсолютных значений или фаз), проверяется: при включении на полные ток и напряжение - по току; при включении на составляющие токов и напряжений обратной и нулевой последовательностей - по току и напряжению.

3.2.23. Для генераторов, работающих на сборные шины, чувствительность токовой защиты от замыканий на землю в обмотке статора, действующей на отключение, определяется ее током срабатывания, который должен быть не более 5 А. Допускается как исключение увеличение тока срабатывания до 5,5 А.

Для генераторов, работающих в блоке с трансформатором, коэффициент чувствительности защиты от однофазных замыканий на землю, охватывающей всю обмотку статора, должен быть не менее 2,0; для защиты напряжения нулевой последовательности, охватывающей не всю обмотку статора, напряжение срабатывания должно быть не более 15 В.

3.2.24. Чувствительность защит на переменном оперативном токе, выполняемых по схеме с дешунтированием электромагнитов отключения, следует проверять с учетом действительной токовой погрешности трансформаторов тока после дешунтирования. При этом минимальное значение коэффициента чувствительности электромагнитов отключения, определяемое для условия их надежного срабатывания, должно быть приблизительно на 20% больше принимаемого для соответствующих защит (см. 3.2.21).

3.2.25. Наименьшие коэффициенты чувствительности для резервных защит при КЗ в конце смежного элемента или наиболее удаленного из нескольких последовательных элементов, входящих в зону резервирования, должны быть (см. также 3.2.17):

для органов тока, напряжения, сопротивления - 1,2;

для органов направления мощности обратной и нулевой последовательностей - 1,4 по мощности и 1,2 по току и напряжению;

для органа направления мощности, включенного на полные ток и напряжение, не нормируется по мощности и 1,2 по току.

При оценке чувствительности ступеней резервных защит, осуществляющих ближнее резервирование (см. 3.2.15), следует исходить из коэффициентов чувствительности, приведенных в 3.2.21 для соответствующих защит.

3.2.26. Для токовых отсечек без выдержки времени, устанавливаемых на линиях и выполняющих функции дополнительных защит, коэффициент чувствительности должен быть около 1,2 при КЗ в месте установки защиты в наиболее благоприятном по условию чувствительности режиме.

3.2.27. Если действие защиты последующего элемента возможно из-за отказа вследствие недостаточной чувствительности защиты предыдущего элемента, то чувствительности этих защит необходимо согласовывать между собой.

Допускается не согласовывать между собой ступени этих защит, предназначенные для дальнего резервирования, если неотключение КЗ вследствие недостаточной чувствительности защиты последующего элемента (например, защиты обратной последовательности генераторов, автотрансформаторов) может привести к тяжелым последствиям.

3.2.28. В сетях с глухозаземленной нейтралью должен быть выбран исходя из условий релейной защиты такой режим заземления нейтралей силовых трансформаторов (т.е. размещение трансформаторов с заземленной нейтралью), при котором значения токов и напряжений при замыканиях на землю обеспечивают действие релейной защиты элементов сети при всех возможных режимах эксплуатации электрической системы.

Для повышающих трансформаторов и трансформаторов с двух- и трехсторонним питанием (или существенной подпиткой от синхронных электродвигателей или синхронных компенсаторов), имеющих неполную изоляцию обмотки со стороны вывода нейтрали, как правило, должно быть исключено возникновение недопустимого для них режима работы с изолированной нейтралью на выделившиеся шины или участок сети 110 - 220 кВ с замыканием на землю одной фазы (см. 3.2.63).

3.2.29. Трансформаторы тока, предназначенные для питания токовых цепей устройств релейной защиты от КЗ, должны удовлетворять следующим требованиям:

1. В целях предотвращения излишних срабатываний защиты при КЗ вне защищаемой зоны погрешность (полная или токовая) трансформаторов тока, как правило, не должна превышать 10%. Более высокие погрешности допускаются при использовании защит (например, дифференциальная защита шин с торможением), правильное действие которых при повышенных погрешностях обеспечивается с помощью специальных мероприятий. Указанные требования должны соблюдаться:

для ступенчатых защит - при КЗ в конце зоны действия ступени защиты, а для направленных ступенчатых защит - также и при внешнем КЗ;

для остальных защит - при внешнем КЗ.

Для дифференциальных токовых защит (шин, трансформаторов, генераторов и т.п.) должна быть учтена полная погрешность, для остальных защит - токовая погрешность, а при включении последних на сумму токов двух или более трансформаторов тока и режиме внешних КЗ - полная погрешность.

При расчетах допустимых нагрузок на трансформаторы тока допускается в качестве исходной принимать полную погрешность.

2. Токовая погрешность трансформаторов тока в целях предотвращения отказов защиты при КЗ в начале защищаемой зоны не должна превышать:

по условиям повышенной вибрации контактов реле направления мощности или реле тока - значений, допустимых для выбранного типа реле;

по условиям предельно допустимой для реле направления мощности и направленных реле сопротивлений угловой погрешности - 50%.

3. Напряжение на выводах вторичной обмотки трансформаторов тока при КЗ в защищаемой зоне не должно превышать значения, допустимого для устройства РЗА.

3.2.30. Токовые цепи электроизмерительных приборов (совместно со счетчиками) и релейной защиты должны быть присоединены, как правило, к разным обмоткам трансформаторов тока.

Допускается их присоединение к одной обмотке трансформаторов тока при условии выполнения требований 1.5.18 и 3.2.29. При этом в цепи защит, которые по принципу действия могут работать неправильно при нарушении токовых цепей, включение электроизмерительных приборов допускается только через промежуточные трансформаторы тока и при условии, что трансформаторы тока удовлетворяют требованиям 3.2.29 при разомкнутой вторичной цепи промежуточных трансформаторов тока.

3.2.31. Защиту с применением реле прямого действия, как первичных, так и вторичных, и защиты на переменном оперативном токе рекомендуется применять, если это возможно и ведет к упрощению и удешевлению электроустановки.

3.2.32. В качестве источника переменного оперативного тока для защит от КЗ, как правило, следует использовать трансформаторы тока защищаемого элемента. Допускается также использование трансформаторов напряжения или трансформаторов собственных нужд.

В зависимости от конкретных условий должна быть применена одна из следующих схем: с дешунтированием электромагнитов отключения выключателей, с использованием блоков питания, с использованием зарядных устройств с конденсатором.

3.2.33. Устройства релейной защиты, выводимые из работы по условиям режима сети, селективности действия или по другим причинам, должны иметь специальные приспособления для вывода их из работы оперативным персоналом.

Для обеспечения эксплуатационных проверок и испытаний в схемах защит следует предусматривать, где это необходимо, испытательные блоки или измерительные зажимы.


ЗАЩИТА ТУРБОГЕНЕРАТОРОВ, РАБОТАЮЩИХ НЕПОСРЕДСТВЕННО

НА СБОРНЫЕ ШИНЫ ГЕНЕРАТОРНОГО НАПРЯЖЕНИЯ <*>

--------------------------------

<*> Требованиями, приведенными в 3.2.34 - 3.2.50, можно руководствоваться и для других генераторов.

3.2.34. Для турбогенераторов выше 1 кВ мощностью более 1 МВт, работающих непосредственно на сборные шины генераторного напряжения, должны быть предусмотрены устройства релейной защиты от следующих видов повреждений и нарушений нормального режима работы:

1) многофазных замыканий в обмотке статора генератора и на его выводах;

2) однофазных замыканий на землю в обмотке статора;

3) двойных замыканий на землю, одно из которых возникло в обмотке статора, а второе - во внешней сети;

4) замыканий между витками одной фазы в обмотке статора (при наличии выведенных параллельных ветвей обмотки);

5) внешних КЗ;

6) перегрузки токами обратной последовательности (для генераторов мощностью более 30 МВт);

7) симметричной перегрузки обмотки статора;

8) перегрузки обмотки ротора током возбуждения (для генераторов с непосредственным охлаждением проводников обмоток);

9) замыкания на землю во второй точке цепи возбуждения;

10) асинхронного режима с потерей возбуждения (в соответствии с 3.2.49).

3.2.35. Для турбогенераторов выше 1 кВ мощностью 1 МВт и менее, работающих непосредственно на сборные шины генераторного напряжения, следует предусматривать устройство релейной защиты в соответствии с 3.2.34, п. 1 - 3, 5, 7.

Для турбогенераторов до 1 кВ мощностью до 1 МВт, работающих непосредственно на сборные шины генераторного напряжения, защиту рекомендуется выполнять в соответствии с 3.2.50.

3.2.36. Для защиты от многофазных замыканий в обмотке статора турбогенераторов выше 1 кВ мощностью более 1 МВт, имеющих выводы отдельных фаз со стороны нейтрали, должна быть предусмотрена продольная дифференциальная токовая защита (исключение см. в 3.2.27). Защита должна действовать на отключение всех выключателей генератора, на гашение поля, а также на останов турбины.

В зону действия защиты кроме генератора должны входить соединения генератора со сборными шинами электростанции (до выключателя).

Продольная дифференциальная токовая защита должна быть выполнена с током срабатывания не более 0,6 Iном. Для генераторов мощностью до 30 МВт с косвенным охлаждением допускается выполнять защиту с током срабатывания 1,3 - 1,4 Iном.

Контроль неисправности токовых цепей защиты следует предусматривать при токе срабатывания защиты более Iном.

Продольная дифференциальная токовая защита должна быть осуществлена с отстройкой от переходных значений токов небаланса (например, реле с насыщающимися трансформаторами тока).

Защиту следует выполнять трехфазной трехрелейной. Для генераторов мощностью до 30 МВт защиту допускается выполнять двухфазной двухрелейной при наличии защиты от двойных замыканий на землю.

3.2.37. Для защиты от многофазных замыканий в обмотке статора генераторов выше 1 кВ мощностью до 1 МВт, работающих параллельно с другими генераторами или электроэнергетической системой, должна быть предусмотрена токовая отсечка без выдержки времени, устанавливаемая со стороны выводов генератора к сборным шинам. Если токовая отсечка не удовлетворяет требованиям чувствительности, вместо нее допускается устанавливать продольную дифференциальную токовую защиту.

Применение токовой отсечки взамен дифференциальной защиты допускается и для генераторов большей мощности, не имеющих выводов фаз со стороны нейтрали.

Для одиночно работающих генераторов выше 1 кВ мощностью до 1 МВт в качестве защиты от многофазных замыканий в обмотке статора следует использовать защиту от внешних КЗ (см. 3.2.44). Защита должна действовать на отключение всех выключателей генератора и гашение его поля.

3.2.38. Для защиты генераторов выше 1 кВ от однофазных замыканий на землю в обмотке статора при естественном емкостном токе замыкания на землю 5 А и более (независимо от наличия или отсутствия компенсации) должна быть предусмотрена токовая защита, реагирующая на полный ток замыкания на землю или на его составляющие высших гармоник. При необходимости для ее включения могут быть установлены трансформаторы тока нулевой последовательности непосредственно у выводов генератора. Применение защиты рекомендуется и при емкостном токе замыкания на землю менее 5 А. Защита должна быть отстроена от переходных процессов и действовать, как в 3.2.36 или 3.2.37.

Когда защита от замыканий на землю не устанавливается (так как при емкостном токе замыкания на землю менее 5 А она нечувствительна) или не действует (например, при компенсации емкостного тока в сети генераторного напряжения), в качестве защиты генератора от замыканий на землю может использоваться установленное на шинах и действующее на сигнал устройство контроля изоляции.

3.2.39. При установке на генераторах трансформатора тока нулевой последовательности для защиты от однофазных замыканий на землю должна быть предусмотрена токовая защита от двойных замыканий на землю, присоединяемая к этому трансформатору тока.

Для повышения надежности действия при больших значениях тока следует применять реле с насыщающимся трансформатором тока. Эта защита должна быть выполнена без выдержки времени и действовать как защита, указанная в 3.2.36 или 3.2.37.

3.2.40. Для защиты от замыканий между витками одной фазы в обмотке статора генератора с выведенными параллельными ветвями должна предусматриваться односистемная поперечная дифференциальная токовая защита без выдержки времени, действующая как защита, указанная в 3.2.36.

3.2.41. Для защиты генераторов мощностью более 30 МВт от токов, обусловленных внешними несимметричными КЗ, а также от перегрузки током обратной последовательности следует предусматривать токовую защиту обратной последовательности, действующую на отключение с двумя выдержками времени (см. 3.2.45).

Для генераторов с непосредственным охлаждением проводников обмоток защиту следует выполнять со ступенчатой или зависимой характеристикой выдержки времени. При этом ступенчатая и зависимая характеристики при вторых (более высоких) выдержках времени не должны быть выше характеристики допустимых перегрузок генератора током обратной последовательности.

Для генераторов с косвенным охлаждением проводников обмоток защиту следует выполнять с независимой выдержкой времени с током срабатывания не более допустимого для генератора при прохождении по нему тока обратной последовательности в течение 2 мин.; меньшая выдержка времени защиты не должна превышать допустимой длительности двухфазного КЗ на выводах генератора.

Токовая защита обратной последовательности, действующая на отключение, должна быть дополнена более чувствительным элементом, действующим на сигнал с независимой выдержкой времени. Ток срабатывания этого элемента должен быть не более длительно допустимого тока обратной последовательности для данного типа генератора.

3.2.42. Для защиты генераторов мощностью более 30 МВт от внешних симметричных КЗ должна быть предусмотрена максимальная токовая защита с минимальным пуском напряжения, выполняемая одним реле тока, включенным на фазный ток, и одним минимальным реле напряжения, включенным на междуфазное напряжение. Ток срабатывания защиты должен быть около 1,3 - 1,5 Iном, а напряжением срабатывания - около 0,5 - 0, Uном.

На генераторах с непосредственным охлаждением проводников обмоток вместо указанной защиты может быть установлена однорелейная дистанционная защита.

3.2.43. Для защиты генераторов мощностью более 1 МВт до 30 МВт от внешних КЗ следует применять максимальную токовую защиту с комбинированным пуском напряжения, выполненным с одним минимальным реле напряжения, включенным на междуфазное напряжение, и одним устройством фильтр-реле напряжения обратной последовательности, разрывающим цепь минимального реле напряжения.

Ток срабатывания защиты и напряжение срабатывания минимального органа напряжения следует принимать равными указанным в 3.2.42, напряжение срабатывания устройства фильтр-реле напряжения обратной последовательности - 0,1 - 0,12 Uном.

3.2.44. Для генераторов выше 1 кВ мощностью до 1 МВт в качестве защиты от внешних КЗ должна быть применена максимальная токовая защита, присоединяемая к трансформаторам тока со стороны нейтрали. Уставку защиты следует выбирать по току нагрузки с необходимым запасом. Допускается также применение упрощенной минимальной защиты напряжения (без реле тока).

3.2.45. Защита генераторов мощностью более 1 МВт от токов, обусловленных внешними КЗ, должна быть выполнена с соблюдением следующих требований:

1. Защиту следует присоединять к трансформаторам тока, установленным на выводах генератора со стороны нейтрали.

2. При наличии секционирования шин генераторного напряжения защиту следует выполнять с двумя выдержками времени: с меньшей выдержкой - на отключение соответствующих секционных и шиносоединительного выключателей, с большей - на отключение выключателя генератора и гашение поля.

3.2.46. На генераторах с непосредственным охлаждением проводников обмоток должна быть предусмотрена защита ротора от перегрузки при работе генератора как с основным, так и с резервным возбуждением. Защиту следует выполнять с независимой или зависимой от тока выдержкой времени и реагирующей на повышение напряжения или тока в обмотке ротора. Защита должна действовать на отключение выключателя генератора и гашение поля. С меньшей выдержкой времени от защиты должна производиться разгрузка ротора.

3.2.47. Защита генератора от токов, обусловленных симметричной перегрузкой, должна быть выполнена в виде максимальной токовой защиты, действующей на сигнал с выдержкой времени и использующей ток одной фазы статора.

Для разгрузки и при необходимости для автоматического отключения генератора с непосредственным охлаждением проводников обмоток при симметричных перегрузках допускается использовать защиту ротора, выполняемую согласно 3.2.46 и реагирующую на перегрузки ротора, сопровождающие симметричные перегрузки турбогенераторов.

3.2.48. Защита от замыканий на землю во второй точке цепи возбуждения турбогенераторов должна быть предусмотрена в одном комплекте на несколько (но не более трех) генераторов с близкими параметрами цепей возбуждения. Защита должна включаться в работу только при появлении замыкания на землю в одной точке цепи возбуждения, выявляемого при периодическом контроле изоляции (см. гл. 1.6). Защита должна действовать на отключение выключателя генератора и гашение поля на генераторах с непосредственным охлаждением проводников обмоток и на сигнал или на отключение на генераторах с косвенным охлаждением.

3.2.49. На турбогенераторах с непосредственным охлаждением проводников обмоток рекомендуется устанавливать устройства защиты от асинхронного режима с потерей возбуждения. Допускается вместо этого предусматривать автоматическое выявление асинхронного режима только по положению устройств автоматического гашения поля. При действии указанных устройств защиты или при отключении АГП на генераторах, допускающих асинхронный режим, должен подаваться сигнал о потере возбуждения.

Генераторы, не допускающие асинхронного режима, а в условиях дефицита реактивной мощности в системе и остальные генераторы, потерявшие возбуждение, должны отключаться от сети при действии указанных устройств (защиты или автоматического гашения поля).

3.2.50. Защиту генераторов до 1 кВ мощностью до 1 МВт с незаземленной нейтралью от всех видов повреждений и ненормальных режимов работы следует осуществлять установкой на выводах автоматического выключателя с максимальными расцепителями или выключателя с максимальной токовой защитой в двухфазном исполнении. При наличии выводов со стороны нейтрали указанную защиту, если возможно, следует присоединять к трансформаторам тока, установленным на этих выводах.

Для указанных генераторов с глухозаземленной нейтралью эта защита должна быть предусмотрена в трехфазном исполнении.


ЗАЩИТА ТРАНСФОРМАТОРОВ (АВТОТРАНСФОРМАТОРОВ)

С ОБМОТКОЙ ВЫСШЕГО НАПРЯЖЕНИЯ 3 КВ И ВЫШЕ И ШУНТИРУЮЩИХ

РЕАКТОРОВ 500 КВ

3.2.51. Для трансформаторов <*> должны быть предусмотрены устройства релейной защиты от следующих видов повреждений и ненормальных режимов работы:

1) многофазных замыканий в обмотках и на выводах;

2) однофазных замыканий на землю в обмотке и на выводах, присоединенных к сети с глухозаземленной нейтралью;

3) витковых замыканий в обмотках;

4) токов в обмотках, обусловленных внешними КЗ;

5) токов в обмотках, обусловленных перегрузкой;

6) понижение уровня масла;

7) частичного пробоя изоляции вводов 500 кВ;

8) однофазных замыканий на землю в сетях 3 - 10 кВ с изолированной нейтралью, если трансформатор питает сеть, в которой отключение однофазных замыканий на землю необходимо по требованиям безопасности (см. 3.2.96).

--------------------------------

<*> Здесь и далее в разд. 3 термин "трансформаторы" распространяется и на автотрансформаторы (соответствующих напряжений и мощностей), если в тексте не делается специальной оговорки.

Рекомендуется, кроме того, применение защиты от однофазных замыканий на землю на стороне 6 - 35 кВ автотрансформаторов с высшим напряжением 220 кВ и выше.

3.2.52. Для шунтирующих реакторов 500 кВ следует предусматривать устройства релейной защиты от следующих видов повреждений и ненормальных режимов работы:

1) однофазных и двухфазных замыканий на землю в обмотках и на выводах;

2) витковых замыканий в обмотках;

3) понижение уровня масла;

4) частичного пробоя изоляции вводов.

3.2.53. Газовая защита от повреждений внутри кожуха, сопровождающихся выделением газа, и от понижения уровня масла должна быть предусмотрена:

для трансформаторов мощностью 6,3 МВ x А и более;

для шунтирующих реакторов напряжением 500 кВ;

для внутрицеховых понижающих трансформаторов мощностью 630 кВ x А и более.

Газовую защиту можно устанавливать также на трансформаторах мощностью 1 - 4 МВ x А.

Газовая защита должна действовать на сигнал при слабом газообразовании и понижении уровня масла и на отключение при интенсивном газообразовании и дальнейшем понижении уровня масла.

Защита от повреждений внутри кожуха трансформатора, сопровождающихся выделением газа, может быть выполнена также с использованием реле давления.

Защита от понижения уровня масла может быть выполнена также в виде отдельного реле уровня в расширителе трансформатора.

Для защиты контакторного устройства РПН с разрывом дуги в масле следует предусматривать отдельное газовое реле и реле давления.

Для защиты избирателей РПН, размещаемых в отдельном баке, следует предусматривать отдельное газовое реле.

Должна быть предусмотрена возможность перевода действия отключающего элемента газовой защиты на сигнал и выполнения раздельной сигнализации от сигнального и отключающих элементов газового реле (различающейся характером сигнала).

Допускается выполнение газовой защиты с действием отключающего элемента только на сигнал:

на трансформаторах, которые установлены в районах, подверженных землетрясениям;

на внутрицеховых понижающих трансформаторах мощностью 2,5 МВ x А и менее, не имеющих выключателей со стороны высшего напряжения.

3.2.54. Для защиты от повреждений на выводах, а также от внутренних повреждений должны быть предусмотрены:

1. Продольная дифференциальная токовая защита без выдержки времени на трансформаторах мощностью 6,3 МВ x А и более, на шунтирующих реакторах 500 кВ, а также на трансформаторах мощностью 4 МВ x А при параллельной работе последних с целью селективного отключения поврежденного трансформатора.

Дифференциальная защита может быть предусмотрена на трансформаторах меньшей мощности, но не менее 1 МВ x А, если:

токовая отсечка не удовлетворяет требованиям чувствительности, а максимальная токовая защита имеет выдержку времени более 0,5 с;

трансформатор установлен в районе, подверженном землетрясениям.

2. Токовая отсечка без выдержки времени, устанавливаемая со стороны питания и охватывающая часть обмотки трансформатора, если не предусматривается дифференциальная защита.

Указанные защиты должны действовать на отключение всех выключателей трансформатора.

3.2.55. Продольная дифференциальная токовая защита должна осуществляться с применением специальных реле тока, отстроенных от бросков тока намагничивания, переходных и установившихся токов небаланса (например, насыщающиеся трансформаторы тока, тормозные обмотки).

На трансформаторах мощностью до 25 МВ x А допускается выполнение защиты с реле тока, отстроенными по току срабатывания от бросков тока намагничивания и переходных значений токов небаланса (дифференциальная отсечка), если при этом обеспечивается требуемая чувствительность.

Продольная дифференциальная защита должна быть выполнена так, чтобы в зону ее действия входили соединения трансформатора со сборными шинами.

Допускается использование для дифференциальной защиты трансформаторов тока, встроенных в трансформатор, при наличии защиты, обеспечивающей отключение (с требуемым быстродействием) КЗ в соединениях трансформатора со сборными шинами.

Если в цепи низшего напряжения трансформатора установлен реактор и защита трансформатора не обеспечивает требования чувствительности при КЗ за реактором, допускается установка трансформаторов тока со стороны выводов низшего напряжения трансформатора для осуществления защиты реактора.

3.2.56. На дифференциальную и газовую защиты трансформаторов, автотрансформаторов и шунтирующих реакторов не должны возлагаться функции датчиков пуска установки пожаротушения. Пуск схемы пожаротушения указанных элементов должен осуществляться от специального устройства обнаружения пожара.

3.2.57. Устройство контроля изоляции вводов (КИВ) 500 кВ должно быть выполнено с действием на сигнал при частичном пробое изоляции вводов, не требующем немедленного отключения, и на отключение при повреждении изоляции ввода (до того, как произойдет полный пробой изоляции).

Должна быть предусмотрена блокировка, предотвращающая ложные срабатывания устройства КИВ при обрывах в цепях присоединения КИВ к выводам.

3.2.58. В случаях присоединения трансформаторов (кроме внутрицеховых) к линиям без выключателей (например, по схеме блока линия - трансформатор) для отключения повреждений в трансформаторе должно быть предусмотрено одно из следующих мероприятий:

1. Установка короткозамыкателя для искусственного замыкания на землю одной фазы (для сети с глухозаземленной нейтралью) или двух фаз между собой (для сети с изолированной нейтралью) и, если это необходимо, отделителя, автоматически отключающегося в бестоковую паузу АПВ линии. Короткозамыкатель должен быть установлен вне зоны дифференциальной защиты трансформатора.

2. Установка на стороне высшего напряжения понижающего трансформатора открытых плавких вставок, выполняющих функции короткозамыкателя и отделителя, в сочетании с АПВ линии.

3. Передача отключающего сигнала на выключатель (или выключатели) линии; при этом, если необходимо, устанавливается отделитель; для резервирования передачи отключающего сигнала допускается установка короткозамыкателя.

При решении вопроса о необходимости применения передачи отключающего сигнала взамен мероприятий п. 1 и 2 должно учитываться следующее:

ответственность линии и допустимость искусственного создания на ней металлического КЗ;

мощность трансформатора и допустимое время ликвидации повреждения в нем;

удаленность подстанции от питающего конца линии и способность выключателя отключать неудаленные КЗ;

характер потребителя с точки зрения требуемой быстроты восстановления напряжения;

вероятность отказов короткозамыкателя при низких температурах и гололеде.

4. Установка предохранителей на стороне высшего напряжения понижающего трансформатора.

Мероприятия п. 1 - 4 могут не предусматриваться для блоков линия - трансформатор, если при двустороннем питании трансформатор защищается общей защитой блока (высокочастотной или продольной дифференциальной специального назначения), а также при мощности трансформатора 25 МВ x А и менее при одностороннем питании, если защита питающей линии обеспечивает также защиту трансформатора (быстродействующая защита линии частично защищает трансформатор и резервная защита линии с временем не более 1 с защищает весь трансформатор); при этом газовая защита выполняется с действием отключающего элемента только на сигнал.

В случае применения мероприятий п. 1 или 3 на трансформаторе должны быть установлены:

при наличии на стороне высшего напряжения трансформатора (110 кВ и выше) встроенных трансформаторов тока - защиты по 3.2.53, 3.2.54, 3.2.59 и 3.2.60;

при отсутствии встроенных трансформаторов тока - дифференциальная (в соответствии с 3.2.54) или максимальная токовая защита, выполненная с использованием накладных или магнитных трансформаторов тока, и газовая защита по 3.2.53.

Повреждения на выводах высшего напряжения трансформаторов допускается ликвидировать защитой линии.

В отдельных случаях при отсутствии встроенных трансформаторов тока допускается применение выносных трансформаторов тока, если при использовании накладных или магнитных трансформаторов тока не обеспечиваются требуемые характеристики защиты.

Для защиты трансформаторов с высшим напряжением 35 кВ в случае применения мероприятия п. 1 должны предусматриваться выносные трансформаторы тока; при этом целесообразность установки короткозамыкателя и выносных трансформаторов тока или выключателя с встроенными трансформаторами тока должна быть обоснована технико-экономическим расчетом.

Если применены открытые плавкие вставки (см. п. 2), то для повышения чувствительности действие газовой защиты может осуществляться на выполнение механическим путем искусственного КЗ на вставках.

Если в нагрузках трансформаторов подстанций содержатся синхронные электродвигатели, то должны быть приняты меры по предотвращению отключения отделителем (при КЗ в одном из трансформаторов) тока от синхронных электродвигателей, идущего через другие трансформаторы.

3.2.59. На трансформаторах мощностью 1 МВ x А и более в качестве защиты от токов в обмотках, обусловленных внешними многофазными КЗ, должны быть предусмотрены следующие защиты с действием на отключение:

1. На повышающих трансформаторах с двусторонним питанием - токовая защита обратной последовательности от несимметричных КЗ и максимальная токовая защита с минимальным пуском напряжения от симметричных КЗ или максимальная токовая защита с комбинированным пуском напряжения (см. 3.2.43).

2. На понижающих трансформаторах - максимальная токовая защита с комбинированным пуском напряжения или без него; на мощных понижающих трансформаторах при наличии двустороннего питания можно применять токовую защиту обратной последовательности от несимметричных КЗ и максимальную токовую защиту с минимальным пуском напряжения от симметричных КЗ.

При выборе тока срабатывания максимальной токовой защиты необходимо учитывать возможные токи перегрузки при отключении параллельно работающих трансформаторов и ток самозапуска электродвигателей, питающихся от трансформаторов.

На понижающих автотрансформаторах 330 кВ и выше следует предусматривать дистанционную защиту для действия при внешних многофазных КЗ в случаях, когда это требуется для обеспечения дальнего резервирования или согласования защит смежных напряжений; в этих случаях указанную защиту допускается устанавливать на автотрансформаторах 220 кВ.

3.2.60. На трансформаторах мощностью менее 1 МВ x А (повышающих и понижающих) в качестве защиты от токов, обусловленных внешними многофазными КЗ, должна быть предусмотрена действующая на отключение максимальная токовая защита.

3.2.61. Защиту от токов, обусловленных внешними многофазными КЗ, следует устанавливать:

1) на двухобмоточных трансформаторах - со стороны основного питания;

2) на многообмоточных трансформаторах, присоединенных тремя и более выключателями, - со всех сторон трансформатора; допускается не устанавливать защиту на одной из сторон трансформатора, а выполнять ее со стороны основного питания, так чтобы она с меньшей выдержкой времени отключала выключатели с той стороны, на которой защита отсутствует;

3) на понижающем двухобмоточном трансформаторе, питающем раздельно работающие секции, - со стороны питания и со стороны каждой секции;

4) при применении накладных трансформаторов тока на стороне высшего напряжения - со стороны низшего напряжения на двухобмоточном трансформаторе и со стороны низшего и среднего напряжений на трехобмоточном трансформаторе.

Допускается защиту от токов, обусловленных внешними многофазными КЗ, предусматривать только для резервирования защит смежных элементов и не предусматривать для действия при отказе основных защит трансформаторов, если выполнение для такого действия приводит к значительному усложнению защиты.

При выполнении защиты от токов, обусловленных внешними многофазными КЗ, по 3.2.59, п. 2, должны также рассматриваться необходимость и возможность дополнения ее токовой отсечкой, предназначенной для отключения с меньшей выдержкой времени КЗ на шинах среднего и низшего напряжений (исходя из уровня токов КЗ, наличия отдельной защиты шин, возможности согласования с защитами отходящих элементов).

3.2.62. Если защита повышающих трансформаторов от токов, обусловленных внешними многофазными КЗ, не обеспечивает требуемых чувствительности и селективности, то для защиты трансформатора допускается использовать реле тока соответствующей защиты генераторов.

3.2.63. На повышающих трансформаторах мощностью 1 МВ x А и более, на трансформаторах с двух- и трехсторонним питанием и на автотрансформаторах по условию необходимости резервирования отключения замыканий на землю на смежных элементах, а на автотрансформаторах, кроме того, и по условию обеспечения селективности защит от замыканий на землю сетей разных напряжений должна быть предусмотрена токовая защита нулевой последовательности от внешних замыканий на землю, устанавливаемая со стороны обмотки, присоединенной к сети с большими токами замыкания на землю.

При наличии части трансформаторов (из числа имеющих неполную изоляцию обмотки со стороны нулевого вывода) с изолированной нейтралью должно обеспечиваться предотвращение недопустимого режима нейтрали этих трансформаторов в соответствии с 3.2.28. С этой целью в случаях, когда на электростанции или подстанции установлены трансформаторы с заземленной и изолированной нейтралью, имеющие питание со сторон низших напряжений, должна быть предусмотрена защита, обеспечивающая отключение трансформатора с изолированной нейтралью или ее автоматическое заземление до отключения трансформаторов с заземленной нейтралью, работающих на те же шины или участок сети.

3.2.64. На автотрансформаторах (многообмоточных трансформаторах) с питанием с нескольких сторон защиту от токов, вызванных внешними КЗ, необходимо выполнять направленной, если это требуется по условиям селективности.

3.2.65. На автотрансформаторах 220 - 500 кВ подстанций, блоках генератор - трансформатор 330 - 500 кВ и автотрансформаторах связи 220 - 500 кВ электростанций должна быть предусмотрена возможность оперативного ускорения защит от токов, обусловленных внешними КЗ, при выводе из действия дифференциальных защит шин или ошиновки, обеспечивающего отключение повреждений на элементах, оставшихся без быстродействующей защиты с выдержкой времени около 0,5 с.

3.2.66. На понижающих трансформаторах и блоках трансформатор - магистраль с высшим напряжением до 35 кВ и соединением обмотки низшего напряжения в звезду с заземленной нейтралью следует предусматривать защиту от однофазных замыканий на землю в сети низшего напряжения, осуществляемую применением:

1) максимальной токовой защиты от внешних КЗ, устанавливаемой на стороне высшего напряжения, и, если это требуется по условию чувствительности, в трехрелейном исполнении;

2) автоматических выключателей или предохранителей на выводах низшего напряжения;

3) специальной защиты нулевой последовательности, устанавливаемой в нулевом проводе трансформатора (при недостаточной чувствительности защит по п. 1 и 2).

Для промышленных электроустановок, если сборка на стороне низшего напряжения с аппаратами защиты присоединений находится в непосредственной близости от трансформатора (до 30 м) или соединение между трансформатором и сборкой выполнено трехфазными кабелями, допускается защиту по п. 3 не применять.

При применении защиты по п. 3 допускается не согласовывать ее с защитами элементов, отходящих от сборки на стороне низшего напряжения.

Для схемы линия - трансформатор в случае применения защиты по п. 3 допускается не прокладывать специальный контрольный кабель для обеспечения действия этой защиты на выключатель со стороны высшего напряжения и выполнять ее с действием на автоматический выключатель, установленный на стороне низшего напряжения.

Требования настоящего параграфа распространяются также на защиту указанных трансформаторов предохранителями, установленными на стороне высшего напряжения.

3.2.67. На стороне низшего напряжения понижающих трансформаторов с высшим напряжением 3 - 10 кВ, питающих сборки с присоединениями, защищенными предохранителями, следует устанавливать главный предохранитель или автоматический выключатель.

Если предохранители на присоединениях низшего напряжения и предохранители (или релейная защита) на стороне высшего напряжения обслуживаются и находятся в ведении одного и того же персонала (например, только персонала энергосистемы или только персонала потребителя), то главный предохранитель или автоматический выключатель на стороне низшего напряжения трансформатора может не устанавливаться.

3.2.68. Защита от однофазных замыканий на землю по 3.2.51, п. 8, должна быть выполнена в соответствии с 3.2.97.

3.2.69. На трансформаторах мощностью 0,4 МВ x А и более в зависимости от вероятности и значения возможной перегрузки следует предусматривать максимальную токовую защиту от токов, обусловленных перегрузкой, с действием на сигнал.

Для подстанций без постоянного дежурства персонала допускается предусматривать действие этой защиты на автоматическую разгрузку или отключение (при невозможности ликвидации перегрузки другими средствами).

3.2.70. При наличии со стороны нейтрали трансформатора отдельного добавочного трансформатора для регулирования напряжения под нагрузкой необходимо предусматривать в дополнение к указанным в 3.2.51 - 3.2.57, 3.2.59, 3.2.63 следующие защиты:

газовую защиту добавочного трансформатора;

максимальную токовую защиту с торможением при внешних КЗ от повреждений в первичной обмотке добавочного трансформатора, за исключением случаев, когда эта обмотка включается в зону действия дифференциальной токовой защиты цепей стороны низшего напряжения автотрансформатора;

дифференциальную защиту, которая охватывает вторичную обмотку добавочного трансформатора.

3.2.71. Защиту линейного добавочного трансформатора, установленного со стороны низшего напряжения автотрансформатора, следует осуществлять:

газовой защитой собственно добавочного трансформатора и защитой контакторного устройства РПН, которая может быть выполнена с применением реле давления или отдельного газового реле;

дифференциальной токовой защитой цепей стороны низшего напряжения автотрансформатора.


ЗАЩИТА БЛОКОВ ГЕНЕРАТОР - ТРАНСФОРМАТОР

3.2.72. Для блоков генератор - трансформатор с генераторами мощностью более 10 МВт должны быть предусмотрены устройства релейной защиты от следующих видов повреждений и ненормальных режимов работы:

1) замыканий на землю на стороне генераторного напряжения;

2) многофазных замыканий в обмотке статора генератора и на его выводах;

3) замыканий между витками одной фазы в обмотке статора турбогенератора (в соответствии с 3.2.76);

4) многофазных замыканий в обмотках и на выводах трансформатора;

5) однофазных замыканий на землю в обмотке трансформатора и на ее выводах, присоединенных к сети с большими токами замыкания на землю;

6) замыканий между витками в обмотках трансформатора;

7) внешних КЗ;

8) перегрузки генератора токами обратной последовательности (для блоков с генераторами мощностью более 30 МВт);

9) симметричной перегрузки обмотки статора генератора и обмоток трансформатора;

10) перегрузки обмотки ротора генератора током возбуждения (для турбогенераторов с непосредственным охлаждением проводников обмоток и для гидрогенераторов);

11) повышения напряжения на статоре генератора и трансформаторе блока (для блоков с турбогенераторами мощностью 160 МВт и более и для всех блоков с гидрогенераторами);

12) замыканий на землю в одной точке цепи возбуждения (в соответствии с 3.2.85);

13) замыканий на землю во второй точке цепи возбуждения турбогенератора мощностью менее 160 МВт;

14) асинхронного режима с потерей возбуждения <*> (в соответствии с 3.2.86);

15) понижения уровня масла в баке трансформатора;

16) частичного пробоя изоляции вводов 500 кВ трансформаторов.

--------------------------------

<*> О предотвращении асинхронного режима без потери возбуждения см. гл. 3.3.

3.2.73. Указания по выполнению защиты генераторов и повышающих трансформаторов, относящихся к их раздельной работе, действительны и для того случая, когда они объединены в блок генератор - трансформатор (автотрансформатор), с учетом требований, приведенных в 3.2.74 - 3.2.90.

3.2.74. На блоках с генераторами мощностью более 30 МВт, как правило, должна быть предусмотрена защита от замыканий на землю в цепи генераторного напряжения, охватывающая всю обмотку статора.

При мощности генератора блоков 30 МВт и менее следует применять устройства, защищающие не менее 85% обмотки статора. Применение таких устройств допускается также на блоках с турбогенераторами мощностью от 30 до 160 МВт, если для защиты всей обмотки статора требуется включение в цепь генератора дополнительной аппаратуры.

Защита должна быть выполнена с действием на отключение с выдержкой времени не более 0,5 с на всех блоках без ответвлений на генераторном напряжении и с ответвлениями к трансформаторам собственных нужд. На блоках, имеющих электрическую связь с сетью собственных нужд или потребителей, питающихся по линиям от ответвлений между генератором и трансформатором, если емкостный ток замыканий на землю составляет 5 А и более, должны быть установлены действующие на отключение защиты от замыканий на землю в обмотке статора генератора и от двойных замыканий на землю, как это предусматривается на генераторах, работающих на сборные шины (см. 3.2.38 и 3.2.39); если емкостный ток замыкания на землю составляет менее 5 А, то защита от замыканий на землю может быть выполнена так же, как на блоках без ответвлений на генераторном напряжении, но с действием на сигнал.

При наличии выключателя в цепи генератора должна быть дополнительно предусмотрена сигнализация замыканий на землю на стороне генераторного напряжения трансформатора блока.

3.2.75. На блоке с генератором, имеющим косвенное охлаждение, состоящем из одного генератора и одного трансформатора, при отсутствии выключателя в цепи генератора рекомендуется предусматривать одну общую продольную дифференциальную защиту блока. При наличии выключателя в цепи генератора на генераторе и трансформаторе должны быть установлены отдельные дифференциальные защиты.

При использовании в блоке двух трансформаторов вместо одного, а также при работе двух и более генераторов без выключателей в блоке с одним трансформатором (укрупненный блок) на каждом генераторе и трансформаторе мощностью 125 МВ x А и более должна быть предусмотрена отдельная продольная дифференциальная защита. При отсутствии встроенных трансформаторов тока на вводах низшего напряжения этих трансформаторов допускается применение общей дифференциальной защиты для двух трансформаторов.

На блоке с генератором, имеющим непосредственное охлаждение проводников обмоток, следует предусматривать отдельную продольную дифференциальную защиту генератора. При этом если в цепи генератора имеется выключатель, то должна быть установлена отдельная дифференциальная защита трансформатора блока (или каждого трансформатора, если в блоке с генератором работают два трансформатора или более; при отсутствии встроенных трансформаторов тока на вводах низшего напряжения этих трансформаторов допускается применение общей дифференциальной защиты для трансформаторов блока); при отсутствии выключателя для защиты трансформатора блока следует установить либо отдельную дифференциальную защиту, либо общую продольную дифференциальную защиту блока (для блоков, состоящих из одного генератора и одного трансформатора, предпочтительна общая дифференциальная защита блока).

Со стороны высшего напряжения дифференциальная защита трансформатора (блока) может быть включена на трансформаторы тока, встроенные в трансформатор блока. При этом для защиты ошиновки между выключателями на стороне высшего напряжения и трансформатором блока должна быть установлена отдельная защита.

Отдельная дифференциальная защита генераторов должна быть выполнена трехфазной трехрелейной с током срабатывания аналогично указанному в 3.2.36.

Для резервирования указанных дифференциальных защит на блоках с генераторами мощностью 160 МВт и более, имеющими непосредственное охлаждение проводников обмоток, следует предусматривать резервную дифференциальную защиту, охватывающую генератор и трансформатор блока вместе с ошиновкой на стороне высшего напряжения.

Рекомендуется установка резервной дифференциальной защиты блоков и при мощности генераторов с непосредственным охлаждением проводников обмоток менее 160 МВт.

При применении резервной дифференциальной защиты на блоках без выключателя в цепи генератора рекомендуется предусматривать отдельные основные дифференциальные защиты генератора и трансформатора.

При наличии выключателя в цепи генератора резервная дифференциальная защита должна выполняться с выдержкой времени 0,35 - 0,5 с.

3.2.76. На турбогенераторах с двумя или тремя параллельными ветвями обмотки статора должна быть предусмотрена односистемная поперечная дифференциальная защита от витковых замыканий в одной фазе, действующая без выдержки времени.

3.2.77. На блоках с генераторами мощностью 160 МВт и более с непосредственным охлаждением проводников обмоток должна быть предусмотрена токовая защита обратной последовательности с интегральной зависимой характеристикой, соответствующей характеристике допустимых перегрузок защищаемого генератора токами обратной последовательности. Защита должна действовать на отключение выключателя генератора, а при его отсутствии - на отключение блока от сети. Для резервирования защит смежных с блоками элементов указанная защита должна иметь орган с независимой выдержкой времени, действующий на отключение блока от сети и двухступенчатым действием согласно 3.2.81.

На блоках с генераторами мощностью менее 160 МВт, имеющими непосредственное охлаждение проводников обмоток, а также на блоках с гидрогенераторами мощностью более 30 МВт, имеющими косвенное охлаждение, токовую защиту обратной последовательности следует выполнять со ступенчатой или зависимой выдержкой времени. При этом разные ступени защиты могут иметь одну или более выдержек времени (см. 3.2.81, п. 4). Указанная ступенчатая или зависимая выдержка времени должна быть согласована с характеристикой допустимых перегрузок генератора током обратной последовательности (см. 3.2.41).

На блоках с турбогенераторами с косвенным охлаждением мощностью более 30 МВт защита должна быть выполнена согласно 3.2.41.

Кроме защит, действующих на отключение, на всех блоках с турбогенераторами мощностью более 30 МВт должна быть предусмотрена сигнализация перегрузки токами обратной последовательности, выполняемая в соответствии с 3.2.41.

3.2.78. На блоках с генераторами мощностью более 30 МВт защита от внешних симметричных КЗ должна быть выполнена, как указано в 3.2.42. При этом для гидрогенераторов напряжение срабатывания защиты следует принимать около 0,6 - 0,7 номинального. На блоках с турбогенераторами, имеющими резервный возбудитель, указанная защита должна быть дополнена токовым реле, включенным на ток со стороны высшего напряжения блока.

На блоках с генераторами мощностью 60 МВт и более вместо указанной защиты рекомендуется применять дистанционную защиту. На блоках с генераторами, имеющими непосредственное охлаждение проводников обмоток, вместо резервной дифференциальной защиты (см. 3.2.75) допускается устанавливать двухступенчатую дистанционную защиту от междуфазных коротких замыканий.

Первая ступень этой защиты, осуществляющая ближнее резервирование, должна выполняться с блокировкой при качаниях и действовать, как указано в 3.2.81, п. 3, с выдержкой времени не более 1 с. Первая ступень должна надежно охватывать трансформатор блока при обеспечении селективности с защитами смежных элементов. Резервирование первой ступенью защит генератора обязательно, если на блоке применяются отдельные дифференциальные защиты трансформатора и генератора.

Вторая ступень, осуществляющая дальнее резервирование, должна действовать, как указано в 3.2.81, п. 2.

Рекомендуется установка двухступенчатой дистанционной защиты и при наличии резервной дифференциальной защиты с целью увеличения эффективности дальнего резервирования. Обе ступени дистанционной защиты в этом случае должны действовать, как указано в 3.2.81, п. 2.

3.2.79. Защиту от внешних КЗ на блоках с генераторами мощностью 30 МВт и менее следует выполнять в соответствии с 3.2.43. Параметры срабатывания защиты на блоках с гидрогенераторами следует принимать согласно 3.2.42, 3.2.43 и 3.2.78.

3.2.80. На блоках генератор - трансформатор с выключателем в цепи генератора при отсутствии резервной дифференциальной защиты блока должна быть предусмотрена максимальная токовая защита со стороны высшего напряжения блока, предназначенная для резервирования основных защит трансформатора блока при работе с отключенным генератором.

3.2.81. Резервная защита блоков генератор - трансформатор должна быть выполнена с учетом следующего:

1. На стороне генераторного напряжения трансформатора блока защита не устанавливается, а используется защита генератора.

2. При дальнем резервировании защита должна действовать, как правило, с двумя выдержками времени: с первой - на деление схемы на стороне высшего напряжения блока (например, на отключение шиносоединительного и секционного выключателей), со второй - на отключение блока от сети.

3. При ближнем резервировании должны производиться отключение блока (генератора) от сети, гашение поля генератора и останов блока, если это требуется по 3.2.89.

4. Отдельные ступени или устройства резервной защиты в зависимости от их назначения и целесообразности использования при дальнем и ближнем резервировании могут иметь одну, две или три выдержки времени.

5. Органы пуска напряжения защит по 3.2.78 и 3.2.79 рекомендуется предусматривать со стороны генераторного напряжения и со стороны сети.

6. Для основных и резервных защит блока, как правило, должны быть предусмотрены отдельные выходные реле и питание оперативным постоянным током от разных автоматических выключателей.

3.2.82. На блоках с турбогенераторами защиту от симметричных перегрузок статора следует выполнять так же, как на генераторах, работающих на сборные шины (см. 3.2.47).

На гидроэлектростанциях без постоянного дежурства оперативного персонала кроме сигнализации симметричных перегрузок должна быть предусмотрена защита с независимой характеристикой, действующая с большей выдержкой времени на отключение блока (генератора) и с меньшей - на разгрузку. Вместо указанной защиты могут быть использованы соответствующие устройства в системе регулирования возбуждения.

3.2.83. На генераторах мощностью 160 МВт и более с непосредственным охлаждением проводников обмоток защита от перегрузки обмотки ротора током возбуждения должна быть выполнена с интегральной зависимой выдержкой времени, которая соответствует характеристике допустимых перегрузок генератора током возбуждения. Эта защита должна действовать на отключение.

При невозможности включения защиты на ток ротора (например, при бесщеточном возбуждении) допускается применение защиты с независимой выдержкой времени, реагирующей на повышение напряжения в цепи возбуждения.

В защите должна быть предусмотрена возможность действия с меньшей выдержкой времени на снижение тока возбуждения. При наличии устройств ограничения перегрузки в регуляторе возбуждения действие на разгрузку может осуществляться одновременно от этих устройств и от защиты ротора. Допускается также использовать устройство ограничения перегрузки в АРВ для действия на разгрузку (с двумя выдержками времени) и отключение. При этом защита с интегральной зависимой выдержкой времени может не устанавливаться.

На турбогенераторах мощностью менее 160 МВт с непосредственным охлаждением проводников обмоток и на гидрогенераторах мощностью более 30 МВт с косвенным охлаждением защиту следует выполнять аналогично тому, как указано в 3.2.46.

При наличии устройств группового управления возбуждением на генераторах рекомендуется выполнять защиту с зависимой выдержкой времени.

При работе генераторов с резервным возбудителем защита ротора от перегрузки должна оставаться в работе. При невозможности использования защиты с зависимой выдержкой времени допускается предусматривать на резервном возбудителе защиту с независимой выдержкой времени.

3.2.84. На блоках с турбогенераторами мощностью 160 МВт и более для предотвращения повышения напряжения в режиме холостого хода должна быть предусмотрена защита от повышения напряжения, которая автоматически выводится из действия при работе генератора на сеть. При действии защиты должно быть обеспечено гашение поля генератора и возбудителя.

На блоках с гидрогенераторами для предотвращения повышения напряжения при сбросах нагрузки должна быть предусмотрена защита от повышения напряжения. Защита должна действовать на отключение блока (генератора) и гашение поля генератора. Допускается действие защиты на останов агрегата.

3.2.85. Защита от замыканий на землю в одной точке цепи возбуждения должна быть предусмотрена на гидрогенераторах, на турбогенераторах с водяным охлаждением обмотки ротора и на всех турбогенераторах мощностью 300 МВт и выше. На гидрогенераторах защита должна действовать на отключение, а на турбогенераторах - на сигнал.

Защита от замыканий на землю во второй точке цепи возбуждения турбогенераторов должна быть установлена на блоках мощностью менее 160 МВт в соответствии с 3.2.48.

3.2.86. На блоках с турбогенераторами мощностью 160 МВт и более, имеющими непосредственное охлаждение проводников обмоток, и с гидрогенераторами следует предусматривать устройства защиты от асинхронного режима с потерей возбуждения.

Указанные устройства рекомендуется применять и на турбогенераторах мощностью менее 160 МВт с непосредственным охлаждением проводников обмоток. На этих турбогенераторах допускается также предусматривать автоматическое выявление асинхронного режима только по отключенному положению устройств автоматического гашения поля (без применения защиты от асинхронного режима).

При переводе в асинхронный режим турбогенератора, потерявшего возбуждение, указанные выше устройства защиты или автоматического гашения поля должны действовать на сигнал о потере возбуждения и производить автоматическое переключение нагрузки собственных нужд с ответвлением блока, генератор которого потерял возбуждение, на резервный источник питания.

Все гидрогенераторы и турбогенераторы, не допускающие асинхронного режима, а также остальные турбогенераторы в условиях дефицита реактивной мощности в системе при действии указанных устройств должны отключаться от сети.

3.2.87. При наличии выключателя в цепи генератора с непосредственным охлаждением проводников обмоток следует предусматривать резервирование при отказе этого выключателя (например, применением УРОВ).

3.2.88. УРОВ 110 кВ и выше на электростанциях должно быть выполнено с учетом следующего:

1. Для предотвращения излишнего отключения нескольких блоков резервной защитой при возникновении на одном из них неполнофазного режима в результате отказа выключателя с пофазным приводом при его отключении на электростанциях с генераторами, имеющими непосредственное охлаждение проводников обмоток, должен быть предусмотрен ускоренный запуск УРОВ (например, от токовой защиты нулевой последовательности трансформатора блока со стороны сети с большим током замыкания на землю).

2. Для электростанций, на которых блоки генератор - трансформатор и линии имеют общие выключатели (например, при применении полуторной схемы или схемы многоугольника), необходимо предусматривать устройство телеотключения для отключения выключателя и запрета АПВ на противоположном конце линии при действии УРОВ в случае его пуска от защиты блока. Кроме того, следует предусматривать действие УРОВ на останов передатчика высокочастотной защиты.

3.2.89. При действии на отключение защит статора генератора и трансформатора блока от внутренних повреждений, а также защит ротора генератора должно производиться отключение поврежденного элемента от сети, гашение поля генератора и возбудителя, пуск УРОВ и осуществляться воздействие на технологические защиты.

Если отключение от защиты приводит к обесточиванию нагрузки собственных нужд, присоединенной ответвлением к блоку, защита должна действовать также на отключение выключателей в цепи рабочего источника питания собственных нужд для их перевода на питание от резервного источника с помощью АВР.

Резервные защиты генератора и трансформатора блока при внешних повреждениях должны действовать в соответствии с 3.2.81, п. 2 - 4.

На тепловых электростанциях с блочной схемой в тепловой части в случаях отключения блока при внутренних повреждениях должен обеспечиваться полный останов блока. При внешних повреждениях, а также при действии защит в тех случаях, когда может быть быстро восстановлена работа блока, блок должен переводиться в режим холостого хода, если этот режим допускается тепломеханическим оборудованием.

На гидроэлектростанциях при внутренних повреждениях блока кроме отключения блока должен производиться останов агрегата. Действие на останов агрегата допускается осуществлять также при отключении блока в результате внешних повреждений.

3.2.90. На блоках генератор - трансформатор - линия основная защита линии и резервная защита со стороны энергосистемы должны быть выполнены в соответствии с требованиями настоящей главы по защите линий, а со стороны блока функции резервной защиты линии должны выполняться резервными защитами блока.

Защита блока должна быть выполнена согласно приведенным выше требованиям.

Действие защиты блока на отключение выключателя и пуск УРОВ со стороны энергосистемы должно передаваться с помощью двух взаиморезервируемых устройств телеотключения по высокочастотному каналу или по проводам связи. Кроме того, рекомендуется предусматривать одновременное действие защиты блока на останов передатчика высокочастотной защиты.

На блоках с турбогенераторами (при блочной схеме в тепловой части) со стороны энергосистемы должно передаваться с помощью устройства телеотключения на противоположный конец линии действие защиты шин (при двойной системе шин) или действие УРОВ (при полуторной схеме или схеме многоугольника) соответственно на перевод блока в режим холостого хода или на гашение поля генератора и останов блока. Кроме того, рекомендуется использовать устройство телеотключения для ускорения гашения поля генератора и отключение собственных нужд при действии резервных защит со стороны энергосистемы.

При неполнофазном отключении выключателя со стороны сети с большим током замыкания на землю должен производиться ускоренный запуск УРОВ так же, как это предусмотрено в 3.2.88, п. 1.


ЗАЩИТА ВОЗДУШНЫХ И КАБЕЛЬНЫХ ЛИНИЙ В СЕТЯХ

НАПРЯЖЕНИЕМ 3 - 10 КВ С ИЗОЛИРОВАННОЙ НЕЙТРАЛЬЮ

3.2.91. Для линий в сетях 3 - 10 кВ с изолированной нейтралью (в том числе и с нейтралью, заземленной через дугогасительный реактор) должны быть предусмотрены устройства релейной защиты от многофазных замыканий и от однофазных замыканий на землю.

3.2.92. Защиту от многофазных замыканий следует предусматривать в двухфазном исполнении и включать в одни и те же фазы по всей сети данного напряжения для обеспечения отключения в большинстве случаев двойных замыканий на землю только одного места повреждения.

Защита должна быть выполнена одно-, двух- или трехрелейной в зависимости от требований чувствительности и надежности.

3.2.93. На одиночных линиях с односторонним питанием от многофазных замыканий должна устанавливаться, как правило, двухступенчатая токовая защита, первая ступень которой выполнена в виде токовой отсечки, а вторая - в виде максимальной токовой защиты с независимой или зависимой характеристикой выдержки времени.

На нереактированных кабельных линиях с односторонним питанием, отходящих от шин электростанций, токовые отсечки должны быть выполнены без выдержки времени и зона их действия должна быть определена из условия отключения КЗ, сопровождающихся остаточным напряжением на шинах указанных электростанций ниже 0,5 - 0,6 номинального. Для выполнения указанного условия допускается выполнять защиту неселективной в сочетании с устройствами АПВ или АВР, исправляющими полностью или частично неселективное действие защиты. Допускается устанавливать указанные отсечки также на линиях, отходящих от шин подстанций и питающих крупные синхронные электродвигатели.

Если на нереактированных кабельных линиях с односторонним питанием, отходящих от шин электростанций, токовые отсечки не могут быть применены по требованиям селективности, то для обеспечения быстродействия допускается предусматривать защиты по 3.2.94, п. 2 или 3. Применение этих защит допускается также для рабочих линий собственных нужд тепловых электростанций.

На реактированных линиях, выключатели которых не рассчитаны на отключение КЗ до реактора, токовые отсечки не допускаются.

3.2.94. На одиночных линиях с двусторонним питанием при наличии или отсутствии обходных связей, а также на линиях, входящих в кольцевую сеть с одной точкой питания, рекомендуется применять те же защиты, что и на одиночных линиях с односторонним питанием (см. 3.2.93), выполняя их при необходимости направленными.

В целях упрощения защит и обеспечения их селективного действия допускается применять автоматическое деление сети на радиальные участки в момент возникновения повреждения с последующим автоматическим ее восстановлением.

Если ненаправленная или направленная токовая ступенчатая защита не обеспечивает требуемых быстродействия и селективности, допускается предусматривать следующие защиты:

1) дистанционную защиту в простейшем исполнении;

2) поперечную дифференциальную токовую защиту (для сдвоенных кабельных линий);

3) продольную дифференциальную токовую защиту для коротких участков линий; при необходимости прокладки специального кабеля только для продольной дифференциальной защиты длина его должна быть не более 3 км.

Для защит, указанных в п. 2 и 3, в качестве резервной защиты следует предусматривать токовую защиту.

3.2.95. При выполнении защиты параллельных линий 3 - 10 кВ следует руководствоваться указаниями для параллельных линий в сетях 35 кВ (см. 3.2.104).

3.2.96. Защита от однофазных замыканий на землю должна быть выполнена в виде:

селективной защиты (устанавливающей поврежденное направление), действующей на сигнал;

селективной защиты (устанавливающей поврежденное направление), действующей на отключение, когда это необходимо по требованиям безопасности; защита должна быть установлена на питающих элементах во всей электрически связанной сети;

устройства контроля изоляции; при этом отыскание поврежденного элемента должно осуществляться специальными устройствами; допускается отыскание поврежденного элемента поочередным отключением присоединений.

3.2.97. Защита от однофазных замыканий на землю должна быть выполнена, как правило, с использованием трансформаторов тока нулевой последовательности. Защита в первую очередь должна реагировать на установившиеся замыкания на землю; допускается также применение устройств, регистрирующих кратковременные замыкания, без обеспечения повторности действия.

Защита от однофазных замыканий на землю, действующая на отключение без выдержки времени по требованиям безопасности (см. 3.2.96), должна отключать только элемент, питающий поврежденный участок; при этом в качестве резервной должна быть предусмотрена защита, выполняемая в виде защиты нулевой последовательности с выдержкой времени около 0,5 с, действующая на отключение всей электрически связанной сети - системы (секции) шин или питающего трансформатора.

Увеличение тока промышленной частоты специально для обеспечения действия защиты в сети с нейтралью, заземленной через дугогасительный реактор (например, с помощью расстройки реактора), как правило, не допускается предусматривать.


ЗАЩИТА ВОЗДУШНЫХ И КАБЕЛЬНЫХ ЛИНИЙ В СЕТЯХ

НАПРЯЖЕНИЕМ 20 И 35 КВ С ИЗОЛИРОВАННОЙ НЕЙТРАЛЬЮ

3.2.98. Для линий в сетях 20 и 35 кВ с изолированной нейтралью должны быть предусмотрены устройства релейной защиты от многофазных замыканий и от однофазных замыканий на землю.

3.2.99. Защиту от многофазных замыканий следует предусматривать в двухфазном двухрелейном исполнении и включать в одни и те же фазы по всей сети данного напряжения для обеспечения отключения в большинстве случаев двойных замыканий на землю только одного места повреждения. В целях повышения чувствительности к повреждениям за трансформаторами с соединением обмоток звезда - треугольник допускается выполнение трехрелейной защиты.

Защиту от однофазных замыканий на землю следует выполнять, как правило, с действием на сигнал. Для осуществления защиты допускается использовать устройство контроля изоляции.

3.2.100. При выборе типа основной защиты следует учитывать требования обеспечения устойчивости работы энергосистемы и надежной работы потребителя аналогично тому, как это учитывается для защиты линий напряжением 110 кВ (см. 3.2.108).

3.2.101. На одиночных линиях с односторонним питанием от многофазных замыканий должны быть установлены преимущественно ступенчатые защиты тока или ступенчатые защиты тока и напряжения, а если такие защиты не удовлетворяют требованиям чувствительности или быстроты отключения повреждения (см. 3.2.108), например на головных участках, - дистанционная ступенчатая защита преимущественно с пуском по току. В последнем случае в качестве дополнительной защиты рекомендуется использовать токовую отсечку без выдержки времени.

Для линий, состоящих из нескольких последовательных участков, в целях упрощения допускается использование неселективных ступенчатых защит тока и напряжения в сочетании с устройствами поочередного АПВ.

3.2.102. На одиночных линиях, имеющих питание с двух или более сторон (последнее - на линиях с ответвлениями), как при наличии, так и при отсутствии обходных связей, а также на линиях, входящих в кольцевую сеть с одной точкой питания, рекомендуется применять те же защиты, что и на одиночных линиях с односторонним питанием (см. 3.2.101), выполняя их при необходимости направленными, а дистанционные - с пуском от реле сопротивления. При этом допускается неселективное отключение смежных элементов при КЗ в "мертвой" зоне по напряжению реле направления мощности, когда токовая отсечка, используемая в качестве дополнительной защиты (см. 3.2.101), не устанавливается, например из-за недостаточной ее чувствительности. Защита устанавливается, как правило, только с тех сторон, откуда может быть подано питание.

3.2.103. На коротких одиночных линиях с двухсторонним питанием, когда это требуется по условию быстроты действия, допускается применение продольной дифференциальной защиты в качестве основной. При этом длина кабеля, прокладываемого специально для этой защиты, не должна превышать 4 км. Для контроля исправности вспомогательных проводов защиты следует предусматривать специальные устройства. В дополнение к продольной дифференциальной защите в качестве резервной должна быть применена одна из защит по 3.2.102.

3.2.104. На параллельных линиях, имеющих питание с двух или более сторон, а также на питающем конце параллельных линий с односторонним питанием могут быть использованы те же защиты, что и на соответствующих одиночных линиях (см. 3.2.101 и 3.2.102).

Для ускорения отключения повреждения, особенно при использовании токовых ступенчатых защит или ступенчатых защит тока и напряжения, на линиях с двусторонним питанием может быть применена дополнительно защита с контролем направления мощности в параллельной линии. Эта защита может быть выполнена в виде отдельной поперечной токовой направленной защиты или только в виде цепи ускорения установленных защит (максимальной токовой, дистанционной) с контролем направления мощности в параллельной линии.

На приемном конце двух параллельных линий с односторонним питанием, как правило, должна быть использована поперечная дифференциальная направленная защита.

3.2.105. Если защита по 3.2.104 не удовлетворяет требованиям быстродействия (см. 3.2.108), а защита с контролем направления мощности в параллельной линии неприменима или нежелательна, в качестве основной защиты (при работе двух параллельных линий) на двух параллельных линиях с двусторонним питанием и на питающем конце двух параллельных линий с односторонним питанием следует применять поперечную дифференциальную направленную защиту.

При этом в режиме работы одной линии, а также в качестве резервной при работе двух линий следует использовать ступенчатую защиту по 3.2.101 и 3.2.102. Допускается включение этой защиты или отдельных ее ступеней на сумму токов обеих линий (например, резервной ступени в целях увеличения ее чувствительности к повреждениям на смежных элементах). Допускается также использование поперечной дифференциальной направленной защиты в дополнение к ступенчатым токовым защитам для уменьшения времени отключения повреждения на защищаемых линиях, если по условию быстроты действия (см. 3.2.108) ее установка не обязательна.

В отдельных случаях на коротких параллельных линиях допускается применение продольной дифференциальной защиты (см. 3.2.103).


ЗАЩИТА ВОЗДУШНЫХ ЛИНИЙ В СЕТЯХ НАПРЯЖЕНИЕМ

110 - 500 КВ С ЭФФЕКТИВНО ЗАЗЕМЛЕННОЙ НЕЙТРАЛЬЮ

3.2.106. Для линий в сетях 110 - 500 кВ с эффективно заземленной нейтралью должны быть предусмотрены устройства релейной защиты от многофазных замыканий и от замыканий на землю.

3.2.107. Защиты должны быть оборудованы устройствами, блокирующими их действие при качаниях, если в сети возможны качания или асинхронный ход, при которых вероятны излишние срабатывания защиты. Допускается выполнение защиты без блокирующих устройств, если она отстроена от качаний по времени (около 1,5 - 2 с).

3.2.108. Для линий 330 кВ и выше в качестве основной должна быть предусмотрена защита, действующая без замедления при КЗ в любой точке защищаемого участка.

Для линий напряжением 110 - 220 кВ вопрос о типе основной защиты, в том числе о необходимости применения защиты, действующей без замедления при КЗ в любой точке защищаемого участка, должен решаться в первую очередь с учетом требования сохранения устойчивости работы энергосистемы. При этом, если по расчетам устойчивости не предъявляются другие, более жесткие требования, может быть принято, что указанное требование, как правило, удовлетворяется, когда трехфазные КЗ, при которых остаточное напряжение на шинах электростанций и подстанций ниже 0,6 - 0,7 Uном, отключаются без выдержки времени. Меньшее значение остаточного напряжения (0,6 Uном) может быть допущено для линий 110 кВ, менее ответственных линий 220 кВ (в сильно разветвленных сетях, где питание потребителей надежно обеспечивается с нескольких сторон), а также для более ответственных линий 220 кВ в случаях, когда рассматриваемое КЗ не приводит к значительному сбросу нагрузки.

При выборе типа защит, устанавливаемых на линиях 110 - 220 кВ, кроме требования сохранения устойчивости работы энергосистемы должно быть учтено следующее:

1. На линиях 110 кВ и выше, отходящих от АЭС, а также на всех элементах прилегающей сети, на которых при многофазных КЗ остаточное напряжение прямой последовательности на стороне высшего напряжения блоков АЭС может снижаться более чем до 0,45 номинального, следует обеспечивать резервирование быстродействующих защит с выдержкой времени, не превышающей 1,5 с с учетом действия УРОВ.

2. Повреждения, отключение которых с выдержкой времени может привести к нарушению работы ответственных потребителей, должны отключаться без выдержки времени (например, повреждения, при которых остаточное напряжение на шинах электростанций и подстанций будет ниже 0,6 Uном, если отключение их с выдержкой времени может привести к саморазгрузке вследствие лавины напряжения, или повреждения с остаточным напряжением 0,6 Uном и более, если отключение их с выдержкой времени может привести к нарушению технологии).

3. При необходимости осуществления быстродействующего АПВ на линии должна быть установлена быстродействующая защита, обеспечивающая отключение поврежденной линии без выдержки времени с обеих сторон.

4. При отключении с выдержкой времени повреждений с токами, в несколько раз превосходящими номинальный, возможен недопустимый перегрев проводников.

Допускается применение быстродействующих защит в сложных сетях и при отсутствии изложенных выше условий, если это необходимо для обеспечения селективности.

3.2.109. При оценке обеспечения требований устойчивости, исходя из значений остаточного напряжения по 3.2.108, необходимо руководствоваться следующим:

1. Для одиночной связи между электростанциями или энергосистемами указанное в 3.2.108 остаточное напряжение должно быть проверено на шинах подстанций и электростанций, входящих в данную связь, при КЗ на линиях, отходящих от этих шин, кроме линий, образующих связь; для одиночной связи, содержащей часть участков с параллельными линиями, - также при КЗ на каждой из этих параллельных линий.

2. При наличии нескольких связей между электростанциями или энергосистемами указанное в 3.2.108 значение остаточного напряжения должно быть проверено на шинах только тех подстанций или электростанций, где соединяются эти связи, при КЗ на связях и на других линиях, питающихся от этих шин, а также на линиях, питающихся от шин подстанций связей.

3. Остаточное напряжение должно быть проверено при КЗ в конце зоны, охватываемой первой ступенью защиты в режиме каскадного отключения повреждения, т.е. после отключения выключателя с противоположного конца линии защитой без выдержки времени.

3.2.110. На одиночных линиях с односторонним питанием от многофазных замыканий следует устанавливать ступенчатые токовые защиты или ступенчатые защиты тока и напряжения. Если такие защиты не удовлетворяют требованиям чувствительности или быстроты отключения повреждения (см. 3.2.108), например на головных участках, или если это целесообразно по условию согласования защит смежных участков с защитой рассматриваемого участка, должна быть предусмотрена ступенчатая дистанционная защита. В последнем случае в качестве дополнительной защиты рекомендуется использовать токовую отсечку без выдержки времени.

От замыканий на землю должна быть предусмотрена, как правило, ступенчатая токовая направленная или ненаправленная защита нулевой последовательности. Защита должна быть установлена, как правило, только с тех сторон, откуда может быть подано питание.

Для линий, состоящих из нескольких последовательных участков, с целью упрощения допускается использование неселективных ступенчатых защит тока и напряжения (от многофазных замыканий) и ступенчатых токовых защит нулевой последовательности (от замыканий на землю) в сочетании с устройствами поочередного АПВ.

3.2.111. На одиночных линиях, имеющих питание с двух или более сторон (последнее - на линиях с ответвлениями), как при наличии, так и при отсутствии обходных связей, а также на линиях, входящих в кольцевую сеть с одной точкой питания, от многофазных замыканий должна быть применена дистанционная защита (преимущественно трехступенчатая), используемая в качестве резервной или основной (последнее - только на линиях 110 - 220 кВ).

В качестве дополнительной защиты рекомендуется использовать токовую отсечку без выдержки времени. В отдельных случаях допускается использовать токовую отсечку для действия при ошибочном включении на трехфазную закоротку в месте установки защиты, когда токовая отсечка, выполненная для действия в других режимах, не удовлетворяет требованию чувствительности (см. 3.2.26).

От замыканий на землю должна быть предусмотрена, как правило, ступенчатая токовая направленная или ненаправленная защита нулевой последовательности.

3.2.112. В качестве основной защиты от многофазных замыканий на приемном конце головных участков кольцевой сети с одной точкой питания рекомендуется применять одноступенчатую токовую направленную защиту; на других одиночных линиях (преимущественно 110 кВ) допускается в отдельных случаях применять ступенчатые токовые защиты или ступенчатую защиту тока и напряжения, выполняя их в случае необходимости направленными. Защиту следует устанавливать, как правило, только с тех сторон, откуда может быть подано питание.

3.2.113. На параллельных линиях, имеющих питание с двух или более сторон, а также на питающем конце параллельных линий с односторонним питанием могут быть использованы те же защиты, что и на соответствующих одиночных линиях (см. 3.2.110 и 3.2.111).

Для ускорения отключения замыканий на землю, а в отдельных случаях и замыканий между фазами на линиях с двусторонним питанием может быть применена дополнительная защита с контролем направления мощности в параллельной линии. Эта защита может быть выполнена в виде отдельной поперечной токовой защиты (с включением реле на ток нулевой последовательности или на фазные токи) или только в виде цепи ускорения установленных защит (токовой нулевой последовательности, максимальной токовой, дистанционной и т.п.) с контролем направления мощности в параллельных линиях.

С целью повышения чувствительности защиты нулевой последовательности допускается предусматривать выведение из работы отдельных ее ступеней при отключении выключателя параллельной линии.

На приемном конце двух параллельных линий с односторонним питанием, как правило, должна быть предусмотрена поперечная дифференциальная направленная защита.

3.2.114. Если защита по 3.2.113 не удовлетворяет требованиям быстродействия (см. 3.2.108), в качестве основной защиты (при работе двух параллельных линий) на питающем конце двух параллельных линий 110 - 220 кВ с односторонним питанием и на двух параллельных линиях 110 кВ с двусторонним питанием преимущественно в распределительных сетях может быть применена поперечная дифференциальная направленная защита.

При этом в режиме работы одной линии, а также в качестве резервной при работе двух линий используется защита по 3.2.110 и 3.2.111. Допускается включение этой защиты или отдельных ее ступеней на сумму токов обеих линий (например, последней ступени токовой защиты нулевой последовательности) с целью повышения ее чувствительности к повреждениям на смежных элементах.

Допускается использование поперечной дифференциальной направленной защиты в дополнение к ступенчатым токовым защитам параллельных линий 110 кВ для уменьшения времени отключения повреждения на защищаемых линиях в случаях, когда по условиям быстродействия (см. 3.2.108) ее использование не является обязательным.

3.2.115. Если защита по 3.2.111 - 3.2.113 не удовлетворяет требованию быстродействия (см. 3.2.108), в качестве основных защит одиночных и параллельных линий с двусторонним питанием следует предусматривать высокочастотные и продольные дифференциальные защиты.

Для линий 110 - 220 кВ рекомендуется осуществлять основную защиту с использованием высокочастотной блокировки дистанционной и токовой направленной нулевой последовательности защит, когда это целесообразно по условиям чувствительности (например, на линиях с ответвлениями) или упрощения защиты.

При необходимости прокладки специального кабеля использование продольной дифференциальной защиты должно быть обосновано технико-экономическим расчетом.

Для контроля исправность вспомогательных проводов защиты должны быть предусмотрены специальные устройства.

На линиях 330 - 350 кВ в дополнение к высокочастотной защите следует предусматривать использование устройства передачи отключающего или разрешающего высокочастотного сигнала (для ускорения действия ступенчатой резервной защиты), если это устройство предусмотрено для других целей. На линиях 500 кВ допускается устанавливать указанное устройство специально для релейной защиты.

Допускается в случаях, когда это требуется по условиям быстродействия (см. 3.2.108) или чувствительности (например, на линиях с ответвлениями), использование передачи отключающего сигнала для ускорения действия ступенчатых защит линий 110 - 220 кВ.

3.2.116. При выполнении основной защиты по 3.2.115 в качестве резервных следует применять:

от многофазных КЗ, как правило, дистанционные защиты, преимущественно трехступенчатые;

от замыканий на землю ступенчатые токовые направленные или ненаправленные защиты нулевой последовательности.

На случай длительного выведения из действия основной защиты, указанной в 3.2.115, когда эта защита установлена по требованию быстроты отключения повреждения (см. 3.2.108), допускается предусматривать неселективное ускорение резервной защиты от замыканий между фазами (например, с контролем значения напряжения прямой последовательности).

3.2.117. Основные защиты, быстродействующие ступени резервных защит от многофазных замыканий и измерительные органы устройства ОАПВ для линий 330 - 350 кВ должны быть специального исполнения, обеспечивающего их нормальное функционирование (с заданными параметрами) в условиях интенсивных переходных электромагнитных процессов и значительных емкостных проводимостей линий. Для этого должны быть предусмотрены:

в комплектах защит и измерительных органах ОАПВ - мероприятия, ограничивающие влияние переходных электромагнитных процессов (например, низкочастотные фильтры);

в дифференциально-фазной высокочастотной защите, установленной на линиях длиной более 150 км, - устройства компенсации токов, обусловленных емкостной проводимостью линии.

При включении быстродействующих защит на сумму токов двух или более трансформаторов тока в случае невозможности выполнения требований 3.2.29 рекомендуется предусматривать специальные мероприятия для исключения излишнего срабатывания защит при внешних повреждениях (например, загрубление защит) или устанавливать в цепи линии отдельный комплект трансформаторов тока для питания защиты.

В защитах, установленных на линиях 330 - 500 кВ, оборудованных устройствами продольной емкостной компенсации, должны быть предусмотрены мероприятия для предотвращения излишнего срабатывания защиты при внешних повреждениях, обусловленного влиянием указанных устройств. Например, могут быть использованы реле направления мощности обратной последовательности или передача разрешающего сигнала.

3.2.118. В случае применения ОАПВ устройства релейной защиты должны быть выполнены так, чтобы:

1) при замыканиях на землю одной фазы, а в отдельных случаях и при замыканиях между двумя фазами было обеспечено отключение только одной фазы (с последующим ее автоматическим повторным включением);

2) при неуспешном повторном включении на повреждения, указанные в п. 1, производилось отключение одной или трех фаз в зависимости от того, предусматривается длительный неполнофазный режим работы линии или не предусматривается;

3) при других видах повреждения защита действовала на отключение трех фаз.


ЗАЩИТА ШИН, ЗАЩИТА НА ОБХОДНОМ,

ШИНОСОЕДИНИТЕЛЬНОМ И СЕКЦИОННОМ ВЫКЛЮЧАТЕЛЯХ

3.2.119. Для сборных шин 110 кВ и выше электростанций и подстанций отдельные устройства релейной защиты должны быть предусмотрены:

1) для двух систем шин (двойная система шин, полуторная схема и др.) и одиночной секционированной системы шин;

2) для одиночной несекционированной системы шин, если отключение повреждений на шинах действием защит присоединенных элементов недопустимо по условиям, которые аналогичны приведенным в 3.2.108, или если на линиях, питающих рассматриваемые шины, имеются ответвления.

3.2.120. Для сборных шин 35 кВ электростанций и подстанций отдельные устройства релейной защиты должны быть предусмотрены:

по условиям, приведенным в 3.2.108;

для двух систем или секций шин, если при использовании для их разделения защиты, установленной на шиносоединительном (секционном) выключателе, или защит, установленных на элементах, которые питают данные шины, не удовлетворяются требования надежности питания потребителей (с учетом возможностей, обеспечиваемых устройствами АПВ и АВР).

3.2.121. В качестве защиты сборных шин электростанций и подстанций 35 кВ и выше следует предусматривать, как правило, дифференциальную токовую защиту без выдержки времени, охватывающую все элементы, которые присоединены к системе или секции шин. Защита должна осуществляться с применением специальных реле тока, отстроенных от переходных и установившихся токов небаланса (например, реле, включенных через насыщающиеся трансформаторы тока, реле с торможением).

При присоединении трансформатора (автотрансформатора) 330 кВ и выше более чем через один выключатель рекомендуется предусматривать дифференциальную токовую защиту ошиновки.

3.2.122. Для двойной системы шин электростанций и подстанций 35 кВ и выше с одним выключателем на присоединенный элемент дифференциальная защита должна быть предусмотрена в исполнении для фиксированного распределения элементов.

В защите шин 110 кВ и выше следует предусматривать возможность изменения фиксации при переводе присоединения с одной системы шин на другую на рядах зажимов.

3.2.123. Дифференциальная защита, указанная в 3.2.121 и 3.2.122, должна быть выполнена с устройством контроля исправности вторичных цепей задействованных трансформаторов тока, действующим с выдержкой времени на вывод защиты из работы и на сигнал.

3.2.124. Для секционированных шин 6 - 10 кВ электростанций должна быть предусмотрена двухступенчатая неполная дифференциальная защита, первая ступень которой выполнена в виде токовой отсечки по току и напряжению или дистанционной защиты, а вторая - в виде максимальной токовой защиты. Защита должна действовать на отключение питающих элементов и трансформатора собственных нужд.

Если при указанном выполнении второй ступени защиты не обеспечивается требуемая чувствительность при КЗ в конце питаемых реактированных линий (нагрузка на шинах генераторного напряжения большая, выключатели питаемых линий установлены за реакторами), следует выполнять ее в виде отдельных комплектов максимальных токовых защит с пуском или без пуска напряжения, устанавливаемых в цепях реакторов; действие этих комплектов на отключение питающих элементов должно контролироваться дополнительным устройством, срабатывающим при возникновении КЗ. При этом на секционном выключателе должна быть предусмотрена защита (предназначенная для ликвидации повреждений между реактором и выключателем), вводимая в действие при отключении этого выключателя. При выделении части питающих элементов на резервную систему шин должна быть предусмотрена неполная дифференциальная защита шин в исполнении для фиксированного распределения элементов.

Если возможны частые режимы работы с разделением питающих элементов на разные системы шин, допускается предусматривать отдельные дистанционные защиты, устанавливаемые на всех питающих элементах, кроме генераторов.

3.2.125. Для секционированных шин 6 - 10 кВ электростанций с генераторами мощностью 12 МВт и менее допускается не предусматривать специальную защиту; при этом ликвидация КЗ на шинах должна осуществляться действием максимальных токовых защит генераторов.

3.2.126. Специальные устройства релейной защиты для одиночной секционированной и двойной систем шин 6 - 10 кВ понижающих подстанций, как правило, не следует предусматривать, а ликвидация КЗ на шинах должна осуществляться действием защит трансформаторов от внешних КЗ и защит, установленных на секционном или шиносоединительном выключателе. В целях повышения чувствительности и ускорения действия защиты шин мощных подстанций допускается применять защиту, включенную на сумму токов питающих элементов. При наличии реакторов на линиях, отходящих от шин подстанций, допускается защиту шин выполнять по аналогии с защитой шин электростанций.

3.2.127. При наличии трансформаторов тока, встроенных в выключатели, для дифференциальной защиты шин и для защит присоединений, отходящих от этих шин, должны быть использованы трансформаторы тока, размещенные с разных сторон выключателя, чтобы повреждения в выключателе входили в зоны действия этих защит.

Если выключатели не имеют встроенных трансформаторов тока, то в целях экономии следует предусматривать выносные трансформаторы тока только с одной стороны выключателя и устанавливать их по возможности так, чтобы выключатели входили в зону действия дифференциальной защиты шин. При этом в защите двойной системы шин с фиксированным распределением элементов должно быть предусмотрено использование двух сердечников трансформаторов тока в цепи шиносоединительного выключателя.

При применении отдельных дистанционных защит в качестве защиты шин трансформаторы тока этих защит в цепи секционного выключателя должны быть установлены между секцией шин и реактором.

3.2.128. Защиту шин следует выполнять так, чтобы при опробовании поврежденной системы или секции шин обеспечивалось селективное отключение системы (секции) без выдержки времени.

3.2.129. На обходном выключателе 110 кВ и выше при наличии шиносоединительного (секционного) выключателя должны быть предусмотрены защиты (используемые при проверке и ремонте защиты, выключателя и трансформаторов тока любого из элементов, присоединенных к шинам);

трехступенчатая дистанционная защита и токовая отсечка от многофазных КЗ;

четырехступенчатая токовая направленная защита нулевой последовательности от замыкания на землю.

При этом на шиносоединительном (секционном) выключателе должны быть предусмотрены защиты (используемые для разделения систем или секций шин при отсутствии УРОВ или выведении его или защиты шин из действия, а также для повышения эффективности дальнего резервирования):

двухступенчатая токовая защита от многофазных КЗ;

трехступенчатая токовая защита нулевой последовательности от замыканий на землю.

Допускается установка более сложных защит на шиносоединительном (секционном) выключателе, если это требуется для повышения эффективности дальнего резервирования.

На шиносоединительном (секционном) выключателе 110 кВ и выше, предназначенном и для выполнения функции обходного выключателя, должны быть предусмотрены те же защиты, что на обходном и шиносоединительном (секционном) выключателях при их раздельном исполнении.

Рекомендуется предусматривать перевод основных быстродействующих защит линий 110 кВ и выше на обходной выключатель.

На шиносоединительном (секционном) выключателе 3 - 35 кВ должна быть предусмотрена двухступенчатая токовая защита от многофазных КЗ.

3.2.130. Отдельную панель защиты, предназначенную специально для использования вместо выводимой на проверку защиты линии, следует предусматривать при схемах электрических соединений, в которых отсутствует обходной выключатель (например, четырехугольник, полуторная схема и т.п.); такую отдельную панель защиты следует предусматривать для линий 220 кВ, не имеющих отдельной основной защиты; для линий 330 - 500 кВ.

Допускается предусматривать отдельную панель защиты для линий 110 кВ, не имеющих отдельной основной защиты, при схемах электрических соединений "мостик" с выключателями в цепях линий и "многоугольник", если при проверке защиты линии ликвидировать повреждения на ней в соответствии с предъявляемыми требованиями более простыми средствами технически невозможно.


ЗАЩИТА СИНХРОННЫХ КОМПЕНСАТОРОВ

3.2.131. Устройства релейной защиты синхронных компенсаторов следует выполнять аналогично предусматриваемым для турбогенераторов соответствующих мощностей со следующими отличиями:

1. Защита от токов, обусловленных симметричной перегрузкой, действующая на сигнал, должна выводиться на период пуска, если в этом режиме возможно ее действие.

2. Следует предусматривать минимальную защиту напряжения, действующую на отключение выключателя синхронного компенсатора. Напряжение срабатывания защиты должно быть принято равным 0,1 - 0,2 Uном, выдержка времени - около 10 с.

3. Должна быть предусмотрена защита, действующая при кратковременном исчезновении питания подстанции (например, в бестоковую паузу АПВ питающей линии). Защита должна выполняться в виде минимальной защиты частоты и действовать на отключение выключателя синхронного компенсатора или на АГП. Допускается использование защиты, выполненной на других принципах, например реагирующей на скорость снижения частоты.

4. На синхронных компенсаторах мощностью 50 Мвар и более следует предусматривать защиту от потери возбуждения (снижения тока возбуждения ниже допустимого предела) с действием на отключение синхронного компенсатора или на сигнал. Для синхронных компенсаторов, на которых предусматривается возможность перевода на режим работы с отрицательным током ротора, эту защиту допускается не применять.

5. Для синхронного компенсатора, работающего в блоке с трансформатором, при замыкании на землю в обмотке статора должно быть предусмотрено действие защиты, установленной на стороне низшего напряжения трансформатора.

Если ток замыкания на землю на стороне низшего напряжения трансформатора превышает 5 А, допускается не устанавливать дугогасящий реактор и выполнять защиту с двумя выдержками времени; с меньшей выдержкой времени предусматривается отключение выключателя синхронного компенсатора, а с большей - подача сигнала.

При токе замыкания на землю до 5 А защита должна быть выполнена с одной выдержкой времени и с действием на сигнал. Для синхронных компенсаторов мощностью 50 Мвар и более должна быть предусмотрена возможность действия защиты на сигнал или на отключение.

3.2.132. На подстанциях без постоянного дежурства персонала защита от перегрузки синхронного компенсатора должна выполняться с независимой выдержкой времени и действовать с меньшей выдержкой времени на сигнал и снижение тока возбуждения, а с большей - на отключение синхронного компенсатора (если предотвращение длительных перегрузок не обеспечивается устройствами автоматического регулирования возбуждения).

3.2.133. Защиту от замыканий на землю в цепи возбуждения синхронного компенсатора следует выполнять так же, как для гидрогенераторов (см. 3.2.85).


Утверждена

Главтехуправлением

Минэнерго СССР

20 мая 1980 года

Глава 3.3. АВТОМАТИКА И ТЕЛЕМЕХАНИКА


ОБЛАСТЬ ПРИМЕНЕНИЯ. ОБЩИЕ ТРЕБОВАНИЯ

3.3.1. Настоящая глава Правил распространяется на автоматические и телемеханические устройства электростанций, энергосистем, сетей и электроснабжения промышленных и других электроустановок, предназначенные для осуществления:

1) АПВ линий или фаз линий, шин и прочих электроустановок после их автоматического отключения;

2) АВР резервного питания или оборудования;

3) включения синхронных генераторов и синхронных компенсаторов на параллельную работу;

4) регулирования возбуждения, напряжения и реактивной мощности;

5) регулирования частоты и активной мощности;

6) предотвращения нарушений устойчивости;

7) прекращения асинхронного режима;

8) ограничения снижения частоты;

9) ограничения повышения частоты;

10) ограничения снижения напряжения;

11) ограничения повышения напряжения;

12) предотвращения перегрузки оборудования;

13) диспетчерского контроля и управления.

Функции устройств по п. 4 - 11 определяются полностью или частично условиями работы энергосистемы в целом. Эти устройства должны проектироваться и эксплуатироваться соответствующими энергетическими предприятиями и энергообъединениями или по согласованию с ними.

В энергосистемах и на энергообъектах могут устанавливаться устройства автоматического управления, не охватываемые настоящей главой Правил и регламентируемые другими документами. Действия этих устройств должны быть согласованы между собой, а также с действием устройств и систем, рассматриваемых в данной главе.

В электрических сетях предприятий - потребителей электроэнергии следует применять такие устройства автоматики, которые по возможности не допускают нарушений наиболее ответственных технологических процессов при кратковременных перерывах электроснабжения, обусловленных действием защит и автоматики в сети внешнего и внутреннего электроснабжения (см. также 5.3.52, 5.3.53 и 5.3.58).


АВТОМАТИЧЕСКОЕ ПОВТОРНОЕ ВКЛЮЧЕНИЕ (АПВ)

3.3.2. Устройства АПВ должны предусматриваться для быстрого восстановления питания потребителей или межсистемных и внутрисистемных связей путем автоматического включения выключателей, отключенных устройствами релейной защиты.

Должно предусматриваться автоматическое повторное включение:

1) воздушных и смешанных (кабельно-воздушных) линий всех типов напряжением выше 1 кВ. Отказ от применения АПВ должен быть в каждом отдельном случае обоснован. На кабельных линиях 35 кВ и ниже АПВ рекомендуется применять в случаях, когда оно может быть эффективным в связи со значительной вероятностью повреждений с образованием открытой дуги (например, наличие нескольких промежуточных сборок, питание по одной линии нескольких подстанций), а также с целью исправления неселективного действия защиты. Вопрос о применении АПВ на кабельных линиях 110 кВ и выше должен решаться при проектировании в каждом отдельном случае с учетом конкретных условий;

2) шин электростанций и подстанций (см. 3.3.24 и 3.3.25);

3) трансформаторов (см. 3.3.26);

4) ответственных электродвигателей, отключаемых для обеспечения самозапуска других электродвигателей (см. 3.3.38).

Для осуществления АПВ по п. 1 - 3 должны также предусматриваться устройства АПВ на обходных, шиносоединительных и секционных выключателях.

Допускается в целях экономии аппаратуры выполнение устройства группового АПВ на линиях, в первую очередь кабельных, и других присоединениях 6 - 10 кВ. При этом следует учитывать недостатки устройства группового АПВ, например возможность отказа в случае если после отключения выключателя одного из присоединений отключение выключателя другого присоединения происходит до возврата устройства АПВ в исходное положение.

3.3.3. Устройства АПВ должны быть выполнены так, чтобы они не действовали при:

1) отключении выключателя персоналом дистанционно или при помощи телеуправления;

2) автоматическом отключении от релейной защиты непосредственно после включения персоналом дистанционно или при помощи телеуправления;

3) отключении выключателя защитой от внутренних повреждений трансформаторов и вращающихся машин, устройствами противоаварийной автоматики, а также в других случаях отключений выключателя, когда действие АПВ недопустимо. АПВ после действия АЧР (ЧАПВ) должно выполняться в соответствии с 3.3.81.

Устройства АПВ должны быть выполнены так, чтобы была исключена возможность многократного включения на КЗ при любой неисправности в схеме устройства.

Устройства АПВ должны выполняться с автоматическим возвратом.

3.3.4. При применении АПВ должно, как правило, предусматриваться ускорение действия релейной защиты на случай неуспешного АПВ. Ускорение действия релейной защиты после неуспешного АПВ выполняется с помощью устройства ускорения после включения выключателя, которое, как правило, должно использоваться и при включении выключателя по другим причинам (от ключа управления, телеуправления или устройства АВР). При ускорении защиты после включения выключателя должны быть приняты меры против возможного отключения выключателя защитой под действием толчка тока при включении из-за неодновременного включения фаз выключателя.

Не следует ускорять защиты после включения выключателя, когда линия уже включена под напряжение другим своим выключателем (т.е. при наличии симметричного напряжения на линии).

Допускается не ускорять после АПВ действие защит линий 35 кВ и ниже, выполненных на переменном оперативном токе, если для этого требуется значительное усложнение защит и время их действия при металлическом КЗ вблизи места установки не превосходит 1,5 с.

3.3.5. Устройства трехфазного АПВ (ТАПВ) должны осуществляться преимущественно с пуском при несоответствии между ранее поданной оперативной командой и отключенным положением выключателя; допускается также пуск устройства АПВ от защиты.

3.3.6. Могут применяться, как правило, устройства ТАПВ однократного или двукратного действия (последнее - если это допустимо по условиям работы выключателя). Устройство ТАПВ двукратного действия рекомендуется принимать для воздушных линий, в особенности для одиночных с односторонним питанием. В сетях 35 кВ и ниже устройства ТАПВ двукратного действия рекомендуется применять в первую очередь для линий, не имеющих резервирования по сети.

В сетях с изолированной или компенсированной нейтралью, как правило, должна применяться блокировка второго цикла АПВ в случае замыкания на землю после АПВ первого цикла (например, по наличию напряжений нулевой последовательности). Выдержка времени ТАПВ во втором цикле должна быть не менее 15 - 20 с.

3.3.7. Для ускорения восстановления нормального режима работы электропередачи выдержка времени устройства ТАПВ (в особенности для первого цикла АПВ двукратного действия на линиях с односторонним питанием) должна приниматься минимально возможной с учетом времени погасания дуги и деионизации среды в месте повреждения, а также с учетом времени готовности выключателя и его привода к повторному включению.

Выдержка времени устройства ТАПВ на линии с двусторонним питанием должна выбираться также с учетом возможного неодновременного отключения повреждения с обоих концов линии; при этом время действия защит, предназначенных для дальнего резервирования, учитываться не должно. Допускается не учитывать разновременности отключения выключателей по концам линии, когда они отключаются в результате срабатывания высокочастотной защиты.

С целью повышения эффективности ТАПВ однократного действия допускается увеличивать его выдержку времени (по возможности с учетом работы потребителя).

3.3.8. На одиночных линиях 110 кВ и выше с односторонним питанием, для которых допустим в случае неуспешного ТАПВ переход на длительную работу двумя фазами, следует предусматривать ТАПВ двукратного действия на питающем конце линии. Перевод линии на работу двумя фазами может производиться персоналом на месте или при помощи телеуправления.

Для перевода линии после неуспешного АПВ на работу двумя фазами следует предусматривать пофазное управление разъединителями или выключателями на питающем и приемном концах линии.

При переводе линии на длительную работу двумя фазами следует при необходимости принимать меры к уменьшению помех в работе линий связи из-за неполнофазного режима работы линии. С этой целью допускается ограничение мощности, передаваемой по линии в неполнофазном режиме (если это возможно по условиям работы потребителя).

В отдельных случаях при наличии специального обоснования допускается также перерыв в работе линии связи на время неполнофазного режима.

3.3.9. На линиях, отключение которых не приводит к нарушению электрической связи между генерирующими источниками, например на параллельных линиях с односторонним питанием, следует устанавливать устройства ТАПВ без проверки синхронизма.

3.3.10. На одиночных линиях с двусторонним питанием (при отсутствии шунтирующих свя